8 resultados para Leukocyte extract
em Aston University Research Archive
Resumo:
HOCl-modified low-density lipoprotein (LDL) has proinflammatory effects, including induction of inflammatory cytokine production, leukocyte adhesion, and ROS generation, but the components responsible for these effects are not completely understood. HOCl and the myeloperoxidase-H2O2-halide system can modify both protein and lipid moieties of LDL and react with unsaturated phospholipids to form chlorohydrins. We investigated the proinflammatory effects of 1-stearoyl-2-oleoyl-sn-3-glycerophosphocholine (SOPC) chlorohydrin on artery segments and spleen-derived leukocytes from ApoE-/- and C57 Bl/6 mice. Treatment of ApoE-/- artery segments with SOPC chlorohydrin, but not unmodified SOPC, caused increased leukocyte-arterial adhesion in a time- and concentration-dependent manner. This could be prevented by pretreatment of the artery with P-selectin or ICAM-1-blocking antibodies, but not anti-VCAM-1 antibody, and immunohistochemistry showed that P-selectin expression was upregulated. However, chlorohydrin treatment of leukocytes did not increase expression of adhesion molecules LFA-1 or PSGL-1, but caused increased release of ROS from PMA-stimulated leukocytes by a CD36-dependent mechanism. The SOPC chlorohydrin-induced adhesion and ROS generation could be abrogated by pretreatment of the ApoE-/- mice with pravastatin or a nitrated derivative, NCX 6550. These findings suggest that phospholipid chlorohydrins formed in HOCl-treated LDL could contribute to the proinflammatory effects observed for this modified lipoprotein in vitro.
Resumo:
Background - Plants have proved to be an important source of anti-cancer drugs. Here we have investigated the cytotoxic action of an aqueous extract of Fagonia cretica, used widely as a herbal tea-based treatment for breast cancer. Methodology/Principal Findings - Using flow cytometric analysis of cells labeled with cyclin A, annexin V and propidium iodide, we describe a time and dose-dependent arrest of the cell cycle in G0/G1 phase of the cell cycle and apoptosis following extract treatment in MCF-7 (WT-p53) and MDA-MB-231 (mutant-p53) human breast cancer cell lines with a markedly reduced effect on primary human mammary epithelial cells. Analysis of p53 protein expression and of its downstream transcription targets, p21 and BAX, revealed a p53 associated growth arrest within 5 hours of extract treatment and apoptosis within 24 hours. DNA double strand breaks measured as ?-H2AX were detected early in both MCF-7 and MDA-MB-231 cells. However, loss of cell viability was only partly due to a p53-driven response; as MDA-MB-231 and p53-knockdown MCF-7 cells both underwent cell cycle arrest and death following extract treatment. p53-independent growth arrest and cytotoxicity following DNA damage has been previously ascribed to FOXO3a expression. Here, in MCF-7 and MDA-MB-231 cells, FOXO3a expression was increased significantly within 3 hours of extract treatment and FOXO3 siRNA reduced the extract-induced loss of cell viability in both cell lines. Conclusions/Significance - Our results demonstrate for the first time that an aqueous extract of Fagonia cretica can induce cell cycle arrest and apoptosis via p53-dependent and independent mechanisms, with activation of the DNA damage response. We also show that FOXO3a is required for activity in the absence of p53. Our findings indicate that Fagonia cretica aqueous extract contains potential anti-cancer agents acting either singly or in combination against breast cancer cell proliferation via DNA damage-induced FOXO3a and p53 expression.
Resumo:
We present the first experimental implementation of an all-optical ROADM scheme for routing of individual channels within an all-optical OFDM superchannel. The interferometric technique demonstrated enables a fully flexible node, implementing the extraction, drop and addition of individual sub-channel.
Resumo:
We present the experimental implementation of an all-optical ROADM scheme for routing of an individual subchannel within an all-optical OFDM superchannel. The different functions required of optical node were demonstrated using interferometric technique with the extraction, drop, and addition of individual subchannel in a ten subchannels optically aggregated signal. The scheme we reported enables a fully flexible node compatible with future terabit per second superchannel transmission.
Resumo:
In Thailand, the leaves of Aquilaria crassna have been used traditionally for the treatments of various disorders, but without any scientific analysis. In this study, the antipyretic, analgesic, anti-inflammatory and anti-oxidative properties of A. crassna leaves extract were investigated at a wide dose range in rodents. Experimental animals were treated orally with an aqueous extract of Aquilaria crassna leaves (ACE). They were tested for antipyretic (Baker′s yeast-induced fever in rats), analgesic (hot plate test in mice) and anti-inflammatory (carrageenan-induced paw edema in rats) activities. An anti-oxidative effect of ACE was evaluated by using the DPPH anti-oxidant assay. The results showed that, after 5 hours of yeast injection, 400 and 800 mg/kg ACE significantly reduced the rectal temperature of rats. Mice were found significantly less sensitive to heat at an oral dose of 800 mg/kg ACE, after 60 and 90 min. No anti-inflammatory activity of ACE at an 800 mg/kg dose could be observed in the rat paw assay. An anti-oxidative activity of ACE was observed with an IC 50 value of 47.18 g/ ml. No behavioral or movement change could be observed in mice after oral administration of ACE (800 or 8,000 mg/kg) for seven consecutive days. Interestingly, from the second day of treatment, animals had a significant lower body weight at the 8,000 mg/kg dose of ACE compared to the control. No toxicity was identified and the results of this study state clearly that Aquilaria crassna leaves extracts possess antipyretic, analgesic and anti-oxidative properties without anti-inflammatory activity.
Resumo:
The experimental implementation of an all-optical node able of routing a channel contained in an all-optical OFDM super-channel is presented. The extract function is performed through channel selection, reshaping and interferometric suppression.
Resumo:
EPA has been clinically shown to reduce muscle wasting during cancer cachexia. This study investigates whether curcumin or green tea extract (GTE) enhances the ability of low doses of eicosapentaenoic acid (EPA) to reduce loss of muscle protein in an in vitro model. A low dose of EPA with minimal anti-cachectic activity was chosen to evaluate any potential synergistic effect with curcumin or GTE. Depression of protein synthesis and increase in degradation was determined in C2C12 myotubes in response to tumour necrosis factor-α (TNF-α) and proteolysis-inducing factor (PIF). EPA (50 μM) or curcumin (10 μg ml−1) alone had little effect on protein degradation caused by PIF but the combination produced complete inhibition, as did the combination with GTE (10 μg ml−1). In response to TNF-α (25 ng ml−1)-induced protein degradation, EPA had a small, but not significant effect on protein degradation; however, when curcumin and GTE were combined with EPA, the effect was enhanced. EPA completely attenuated the depression of protein synthesis caused by TNF-α, but not that caused by PIF. The combination of EPA with curcumin produced a significant increase in protein synthesis to both agents. GTE alone or in combination with EPA had no effect on the depression of protein synthesis by TNF-α, but did significantly increase protein synthesis in PIF-treated cells. Both TNF-α and PIF significantly reduced myotube diameter from 17 to 13 μm for TNF-α (23.5%) and 15 μm (11.8%) for PIF However the triple combination of EPA, curcumin and GTE returned diameters to values not significantly different from the control. These results suggest that either curcumin or GTE or the combination could enhance the anti-catabolic effect of EPA on lean body mass.