10 resultados para Leptin and STAT3
em Aston University Research Archive
Resumo:
Weight loss normally stimulates hunger, through mechanisms that include falls in circulating leptin and insulin, leading to stimulation of hypothalamic neuropeptide Y (NPY). Here, we investigated the leptin, insulin and NPY to clarify why hunger is suppressed in mice with severe cachexia due to the MAC16 adenocarcinoma. MAC16-bearing mice progressively lost weight (19% below controls) and fat (-61%) over 16 days after tumour transplantation, while total food intake fell by 10%. Pair-fed mice showed less wasting, with final weight being 9% and fat mass 25% below controls. Plasma leptin fell by 85% in MAC16 and 51% in pair-fed mice, in proportion to loss of fat. Plasma insulin was also reduced by 49% in MAC16 and 53% in pair-fed groups. Hypothalamic leptin receptor (OB-Rb) mRNA was significantly increased in both MAC16 (+223%) and pair-fed (+192%) mice. Hypothalamic NPY mRNA was also significantly raised in MAC16 (+152%) and pair-fed (+99%) groups, showing negative correlations with plasma leptin and insulin, and a positive association with OB-Rb mRNA. In MAC16-induced cachexia, leptin production and hypothalamic OB-Rb and NPY expression are regulated appropriately in response to fat depletion. Therefore, suppression of hunger is probably due to tumour products that inhibit NPY transport or release, or that interfere with neuronal targets downstream of NPY.
Resumo:
Obesity is commonly associated with type 2 diabetes and vascular disease. Changes in body composition in the obese state lead to a dysregulation of secretion of adipocyte-secreted hormones known as adipokines. Adipokines such as leptin and adiponectin are known to be involved in many physiological and pathological processes. Current knowledge suggests that adipokines provide potential therapeutic targets against type 2 diabetes and vascular disease.
Resumo:
Visfatin is an adipogenic adipokine with increased levels in obesity, properties common to leptin. Thus, leptin may modulate visfatin production in adipose tissue (AT). Therefore, we investigated the effects of leptin on visfatin levels in 3T3-L1 adipocytes and human/murine AT, with or without a leptin antagonist. The potential signaling pathways and mechanisms regulating visfatin production in AT was also studied. Real-time RT-PCR and Western blotting were used to assess the relative mRNA and protein expression of visfatin. ELISA was performed to measure visfatin levels in conditioned media of AT explants, and small interfering RNA technology was used to reduce leptin receptor expression. Leptin significantly (P<0.01) increased visfatin levels in human and murine AT with a maximal response at leptin 10(-9) M, returning to baseline at leptin 10(-7) M. Importantly, ip leptin administration to C57BL/6 ob/ob mice further supported leptin-induced visfatin protein production in omental AT (P<0.05). Additionally, soluble leptin receptor levels rose with concentration dependency to a maximal response at leptin 10(-7) M (P<0.01). The use of a leptin antagonist negated the induction of visfatin and soluble leptin receptor by leptin. Furthermore, leptin-induced visfatin production was significantly decreased in the presence of MAPK and phosphatidylinositol 3-kinase inhibitors. Also, when the leptin eceptor gene was knocked down using small interfering RNA, eptin-induced visfatin expression was significantly decreased. Thus, leptin increases visfatin production in AT in vivo and ex vivo via pathways involving MAPK and phosphatidylinositol 3-kinase signaling. The pleiotropic effects of leptin may be partially mediated by visfatin.
Resumo:
The adipocyte derived peptide hormone leptin is known to regulate apoptosis and cell viability in several cells and tissues, as well as having several pancreatic islet beta-cell specific effects such as inhibition of glucose-stimulated insulin secretion. This study investigated the effects of leptin upon apoptosis induced by serum depletion and on expression of the apoptotic regulators B-cell leukaemia 2 gene product (BCL-2) and BCL2-associated X protein (Bax) in the glucose-responsive BRIN-BD11 beta-cell line.
Resumo:
Elevated islet uncoupling protein-2 (UCP-2) impairs β-cell function and UCP-2 may be increased in clinical obesity and diabetes. We investigated the effects of glucose and leptin on UCP-2 expression in isolated human islets. Human islets were incubated for 24 h with glucose (5.5–22 mmol/l)±leptin (0–10 nmol/l). Some islet batches were incubated at high (22 mmol/l), and subsequently lower (5.5 mmol/l), glucose to assess reversibility of effects. Leptin effects on insulin release were also measured. Glucose dose-dependently increased UCP-2 expression in all islet batches, maximally by three-fold. This was not fully reversed by subsequently reduced glucose levels. Leptin decreased UCP-2 expression by up to 75%, and maximally inhibited insulin release by 47%, at 22 mmol/l glucose. This is the first report of UCP-2 expression in human islets and provides novel evidence of its role in the loss of β-cell function in diabetes.
Resumo:
Obesity is an established risk factor for type 2 diabetes. Activation of the adiponectin receptors has a clear role in improving insulin resistance although conflicting evidence exists for its effects on pancreatic beta-cells. Previous reports have identified both adiponectin receptors (ADR-1 and ADR-2) in the beta-cell. Recent evidence has suggested that two distinct regions of the adiponectin molecule, the globular domain and a small N-terminal region, have agonist properties. This study investigates the effects of two agonist regions of adiponectin on insulin secretion, gene expression, cell viability and cell signalling in the rat beta-cell line BRIN-BD11, as well as investigating the expression levels of adiponectin receptors (ADRs) in these cells. Cells were treated with globular adiponectin and adiponectin (15-36) +/-leptin to investigate cell viability, expression of key beta-cell genes and ERK1/2 activation. Both globular adiponectin and adiponectin (15-36) caused significant ERK1/2 dependent increases in cell viability. Leptin co-incubation attenuated adiponectin (15-36) but not globular adiponectin induced cell viability. Globular adiponectin, but not adiponectin (15-36), caused a significant 450% increase in PDX-1 expression and a 45% decrease in LPL expression. ADR-1 was expressed at a higher level than ADR-2, and ADR mRNA levels were differentially regulated by non-esterified fatty acids and peroxisome-proliferator-activated receptor agonists. These data provide evidence of roles for two distinct adiponectin agonist domains in the beta-cell and confirm the potentially important role of adiponectin receptor agonism in maintaining beta-cell mass.
Resumo:
Type 2 diabetes (T2D) is characterized by impaired beta cell function and insulin resistance. T2D susceptibility genes identified by Genome-wide association studies (GWAS) are likely to have roles in both impaired insulin secretion from the beta cell as well as insulin resistance. The aim of this study was to use gene expression profiling to assess the effect of the diabetic milieu on the expression of genes involved in both insulin secretion and insulin resistance. We measured the expression of 43 T2D susceptibility genes in the islets, adipose and liver of leptin-deficient Ob/Ob mice compared with Ob/+ littermates. The same panel of genes were also profiled in cultured rodent adipocytes, hepatocytes and beta cells in response to high glucose conditions, to distinguish expression effects due to elevated glycemia from those on the causal pathway to diabetes or induced by other factors in the diabetic microenviroment. We found widespread deregulation of these genes in tissues from Ob/Ob mice, with differential regulation of 23 genes in adipose, 18 genes in liver and one gene (Tcf7l2) in islets of diabetic animals (Ob/Ob) compared to control (Ob/+) animals. However, these expression changes were in most cases not noted in glucose-treated adipocyte, hepatocyte or beta cell lines, indicating that they may not be an effect of hyperglycemia alone. This study indicates that expression changes are apparent with diabetes in both the insulin producing beta cells, but also in peripheral tissues involved in insulin resistance. This suggests that incidence or progression of diabetic phenotypes in a mouse model of diabetes is driven by both secretory and peripheral defects. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart New York.
Resumo:
The abnormalities of lipid metabolism observed in cancer cachexia may be induced by a lipid-mobilizing factor produced by adenocarcinomas. The specific molecules and metabolic pathways that mediate the actions of lipid-mobilizing factor are not known. The mitochondrial uncoupling proteins-1, -2 and -3 are suggested to play essential roles in energy dissipation and disposal of excess lipid. Here, we studied the effects of lipid-mobilizing factor on the expression of uncoupling proteins-1, -2 and -3 in normal mice. Lipid-mobilizing factor isolated from the urine of cancer patients was injected intravenously into mice over a 52-h period, while vehicle was similarly given to controls. Lipid-mobilizing factor caused significant reductions in body weight (-10%, P=0.03) and fat mass (-20%, P<0.01) accompanied by a marked decrease in plasma leptin (-59%, P<0.01) and heavy lipid deposition in the liver. In brown adipose tissue, uncoupling protein-1 mRNA levels were elevated in lipid-mobilizing factor-treated mice (+96%, P<0.01), as were uncoupling proteins-2 and -3 (+57% and +37%, both P<0.05). Lipid-mobilizing factor increased uncoupling protein-2 mRNA in both skeletal muscle (+146%, P<0.05) and liver (+142%, P=0.03). The protein levels of uncoupling protein-1 in brown adipose tissue and uncoupling protein-2 in liver were also increased with lipid-mobilizing factor administration (+49% and +67%, both P=0.02). Upregulation by lipid-mobilizing factor of uncoupling proteins-1, -2 and -3 in brown adipose tissue, and of uncoupling protein-2 in skeletal muscle and liver, suggests that these uncoupling proteins may serve to utilize excess lipid mobilized during fat catabolism in cancer cachexia.
Resumo:
Human and animal studies suggest that obesity in adulthood may have its origins partly during prenatal development. One of the underlying causes of obesity is the perturbation of hypothalamic mechanisms controlling appetite. We determined mRNA levels of genes that regulate appetite, namely neuropeptide Y (NPY), pro-opiomelanocortin (POMC) and the leptin receptor isoform Ob-Rb, in the hypothalamus of adult mouse offspring from pregnant dams fed a protein-restricted diet, and examined whether mismatched post-weaning high-fat diet altered further expression of these gene transcripts. Pregnant MF1 mice were fed either normal protein (C, 18% casein) or protein-restricted (PR, 9% casein) diet throughout pregnancy. Weaned offspring were fed to adulthood a high-fat (HF; 45% kcal fat) or standard chow (21% kcal fat) diet to generate the C/HF, C/C, PR/HF and PR/C groups. Food intake and body weight were monitored during this period. Hypothalamic tissues were collected at 16 weeks of age for analysis of gene expression by real time RT-PCR. All HF-fed offspring were observed to be heavier vs. C groups regardless of the maternal diet during pregnancy. In the PR/HF males, but not in females, daily energy intake was reduced by 20% vs. the PR/C group (p <0.001). In PR/HF males, hypothalamic mRNA levels were lower vs. the PR/C group for NPY (p <0.001) and Ob-Rb (p <0.05). POMC levels were similar in all groups. In females, mRNA levels for these transcripts were similar in all groups. Our results suggest that adaptive changes during prenatal development in response to maternal dietary manipulation may have long-term sex-specific consequences on the regulation of appetite and metabolism following post-weaning exposure to an energy-rich nutritional environment. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of 'slimmed' adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPα), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPα and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia. © 2006 Cancer Research UK.