141 resultados para Lenses.
em Aston University Research Archive
Resumo:
The correction of presbyopia and restoration of true accommodative function to the ageing eye is the focus of much ongoing research and clinical work. A range of accommodating intraocular lenses (AIOLs) implanted during cataract surgery has been developed and they are designed to change either their position or shape in response to ciliary muscle contraction to generate an increase in dioptric power. Two main design concepts exist. First, axial shift concepts rely on anterior axial movement of one or two optics creating accommodative ability. Second, curvature change designs are designed to provide significant amplitudes of accommodation with little physical displacement. Single-optic devices have been used most widely, although the true accommodative ability provided by forward shift of the optic appears limited and recent findings indicate that alternative factors such as flexing of the optic to alter ocular aberrations may be responsible for the enhanced near vision reported in published studies. Techniques for analysing the performance of AIOLs have not been standardised and clinical studies have reported findings using a wide range of both subjective and objective methods, making it difficult to gauge the success of these implants. There is a need for longitudinal studies using objective methods to assess long-term performance of AIOLs and to determine if true accommodation is restored by the designs available. While dual-optic and curvature change IOLs are designed to provide greater amplitudes of accommodation than is possible with single-optic devices, several of these implants are in the early stages of development and require significant further work before human use is possible. A number of challenges remain and must be addressed before the ultimate goal of restoring youthful levels of accommodation to the presbyopic eye can be achieved.
Resumo:
Purpose: To examine the objective clinical performance of ‘comfort-enhanced’ daily disposable contact lenses over a 16-h day. Methods: Four contact lenses (Hilafilcon B, Etafilcon A Plus, Nelfilcon A and Nelfilcon A Plus) were evaluated in an investigator masked, open label trial at the end of a week’s bilateral wear. Pre-lens noninvasive tear break-up time (PL-NITBUT), tear prism height, bulbar hyperaemia and ocular surface temperature (OST) were measured with the lens in situ at 8, 12 and 16 h of wear. Results: There was no difference between how many hours the lenses types were worn each day (F = 0.90, p = 0.44). The PL-NITBUT decreased with the duration of daily lens wear (F = 32.0, p < 0.001) and was more stable with Nelfilcon A Plus (F = 6.00, p = 0.002) than with the other lenses evaluated. Bulbar blood vessels increased in coverage (F = 11.5, p < 0.001) but not overall redness (F = 0.0, p = 0.99) with the duration of daily lens wear, but there was no difference between the lenses (p > 0.05). The tear prism height decreased with the duration of daily wear (F = 27.0, p < 0.001) and differed between lenses (F = 2.9, p = 0.04). The OST decreased with the duration of lens wear (F = 119.7, p < 0.001) and was reduced by daily disposable lens wear (F = 7.88, p < 0.001), but did not differ between lenses (F = 0.88, p = 0.45). Conclusions: Objective measures of tear film indicated a difference between the lenses evaluated for PLNITBUT and tear prism height, but not for wearing time or bulbar conjunctival hyperaemia. Therefore clinical benefits of daily disposable ‘comfort enhancing’ contact lenses can be measured, but challenges remain in producing contact lenses that do not compromise anterior eye physiology over the whole day. 2010 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Resumo:
This is a review of studies that have investigated the proposed rehabilitative benefit of tinted lenses and filters for people with low vision. Currently, eye care practitioners have to rely on marketing literature and anecdotal reports from users when making recommendations for tinted lens or filter use in low vision. Our main aim was to locate a prescribing protocol that was scientifically based and could assist low vision specialists with tinted lens prescribing decisions. We also wanted to determine if previous work had found any tinted lens/task or tinted lens/ocular condition relationships, i.e. were certain tints or filters of use for specific tasks or for specific eye conditions. Another aim was to provide a review of previous research in order to stimulate new work using modern experimental designs. Past studies of tinted lenses and low vision have assessed effects on visual acuity (VA), grating acuity, contrast sensitivity (CS), visual field, adaptation time, glare, photophobia and TV viewing. Objective and subjective outcome measures have been used. However, very little objective evidence has been provided to support anecdotal reports of improvements in visual performance. Many studies are flawed in that they lack controls for investigator bias, and placebo, learning and fatigue effects. Therefore, the use of tinted lenses in low vision remains controversial and eye care practitioners will have to continue to rely on anecdotal evidence to assist them in their prescribing decisions. Suggestions for future research, avoiding some of these experimental shortcomings, are made. © 2002 The College of Optometrists.
Resumo:
Purpose: To develop a questionnaire that subjectively assesses near visual function in patients with 'accommodating' intraocular lenses (IOLs). Methods: A literature search of existing vision-related quality-of-life instruments identified all questions relating to near visual tasks. Questions were combined if repeated in multiple instruments. Further relevant questions were added and item interpretation confirmed through multidisciplinary consultation and focus groups. A preliminary 19-item questionnaire was presented to 22 subjects at their 4-week visit post first eye phacoemulsification with 'accommodative' IOL implantation, and again 6 and 12 weeks post-operatively. Rasch Analysis, Frequency of Endorsement, and tests of normality (skew and kurtosis) were used to reduce the instrument. Cronbach's alpha and test-retest reliability (intraclass correlation coefficient, ICC) were determined for the final questionnaire. Construct validity was obtained by Pearson's product moment correlation (PPMC) of questionnaire scores to reading acuity (RA) and to Critical Print Size (CPS) reading speed. Criterion validity was obtained by receiver operating characteristic (ROC) curve analysis and dimensionality of the questionnaire was assessed by factor analysis. Results: Rasch Analysis eliminated nine items due to poor fit statistics. The final items have good separation (2.55), internal consistency (Cronbach's α = 0.97) and test-retest reliability (ICC = 0.66). PPMC of questionnaire scores with RA was 0.33, and with CPS reading speed was 0.08. Area under the ROC curve was 0.88 and Factor Analysis revealed one principal factor. Conclusion: The pilot data indicates the questionnaire to be internally consistent, reliable and a valid instrument that could be useful for assessing near visual function in patients with 'accommodating' IOLS. The questionnaire will now be expanded to include other types of presbyopic correction. © 2007 British Contact Lens Association.
Resumo:
Editorial
Resumo:
The work presents a new method that combines plasma etching with extrinsic techniques to simultaneously measure matrix and surface protein and lipid deposits. The acronym for this technique is PEEMS - Plasma Etching and Emission Monitoring System. Previous work has identified the presence of proteinaceous and lipoidal deposition on the surface of contact lenses and highlighted the probability that penetration of these spoilants will occur. This technique developed here allows unambiguous identification of the depth of penetration of spoilants to be made for various material types. It is for this reason that the technique has been employed in this thesis. The technique is applied as a 'molecular' scalpel, removing known amounts of material from the target. In this case from both the anterior .and posterior surfaces of a 'soft' contact lens. The residual material is then characterised by other analytical techniques such as UV/visible .and fluorescence spectroscopy. Several studies have be.en carried out for both in vivo and in vitro spoilt materials. The analysis and identification of absorbed protein and lipid of the substrate revealed the importance of many factors in the absorption and adsorption process. The effect of the material structure, protein nature (in terms of size, shape and charge) and environment conditions were examined in order to determine the relative uptake of tear proteins. The studies were extended to real cases in order to study the. patient dependent factors and lipoidal penetration.
Resumo:
Currently over 50 million people worldwide wear contact lenses, of which over 75% wear hydrogel lenses. Significant deposition occurs in approximately 80% of hydrogel lenses and many contact lens wearers cease wearing lenses due to problems associated with deposition. The contact lens field is not alone in encountering complications associated with interactions between the body and artificial devices. The widespread use of man-made materials to replace structures in the body has emphasised the importance of studies that examine the interactions between implantation materials and body tissues.This project used carefully controlled, randomized clinical studies to study the interactive effects of contact lens materials, care systems, replacement periods and patient differences. Of principal interest was the influence of these factors on material deposition and their subsequent impact on subjective performance. A range of novel and established analytical techniques were used to examine hydrogel lenses following carefully controlled clinical studies in which clinical performance was meticulously monitored. These studies established the inter-relationship between clinical performance and deposition to be evaluated. This project showed that significant differences exist between individuals in their ability to deposit hydrogel lenses, with approximately 20% of subjects displaying significant deposition irrespective of the lens material. Additionally, materials traditionally categorised together show markedly different spoilation characteristics, which are wholly attributable to their detailed chemical structure. For the first time the in vivo deposition kinetics of both protein and lipid in charged and uncharged polymers was demonstrated. In addition the importance of care systems in the deposition process was shown, clearly demonstrating the significance of the quality rather than the quantity of deposition in influencing subjective performance.
Resumo:
The design and synthesis of biomaterials covers a growing number of biomedical applications. The use of biomaterials in biological environment is associated with a number of problems, the most important of which is biocompatabUity. If the implanted biomaterial is not compatible with the environment, it will be rejected by the biological site. This may be manifested in many ways depending on the environment in which it is used. Adsorption of proteins takes place almost instantaneously when a biomaterial comes into contact with most biological fluids. The eye is a unique body site for the study of protein interactions with biomaterials, because of its ease of access and deceptive complexity of the tears. The use of contact lenses for either vision correction and cosmetic reasons or as a route for the controlled drug delivery, has significantly increased in recent years. It is relatively easy to introduce a contact lens Into the tear fluid and remove after a few minutes without surgery or trauma to the patient. A range of analytical techniques were used and developed to measure the proteins absorbed to some existing commercial contact lens materials and also to novel hydrogels synthesised within the research group. Analysis of the identity and quantity of proteins absorbed to biomaterials revealed the importance of many factors on the absorption process. The effect of biomaterial structure, protein nature in terms of size. shape and charge and pH of the environment on the absorption process were examined in order to determine the relative up-take of tear proteins. This study showed that both lysozyme and lactoferrin penetrate the lens matrix of ionic materials. Measurement of the mobility and activity of the protein deposited into the surface and within the matrix of ionic lens materials demonstrated that the mobility is pH dependent and, within the experimental errors, the biological activity of lysozyme remained unchanged after adsorption and desorption. The study on the effect of different monomers copolymerised with hydroxyethyl methacrylate (HEMA) on the protein up-take showed that monomers producing a positive charge on the copolymer can reduce the spoilation with lysozyme. The studies were extended to real cases in order to compare the patient dependent factors. The in-vivo studies showed that the spoilation is patient dependent as well as other factors. Studies on the extrinsic factors such as dye used in colour lenses showed that the addition of colourant affects protein absorption and, in one case, its effect is beneficial to the wearer as it reduces the quantity of the protein absorbed.
Resumo:
In the last few years, there has been considerable interest in using saturated magnetic objective lenses in high resolution electron microscopes. Such lenses, in present commercial electron microscopes, are energized either by conventional or superconducting coils. Very little work, however, has been reported on the use of conventional coils in saturated magnetic electron lenses. The present investigation has been concerned with the design of high flux density saturated objective lenses of both single and double polepiece types which may be energized by conventional coils and in some cases by superconducting coils. Such coils have the advantage of being small and capable of carrying high current densities. The present work has been carried out with the aid of several computer programs based on the finite element method. The effect of the shape and position of the energizing coil on the electron optical parameter has been investigated. Electron optical properties such as chromatic and spherical aberration have been studies in detail for saturated single and double polepiece lenses. Several high flux density coils of different shapes have been investigated. The choice of the most favourable coil shape and position subject to the operational requirements, has been studied in some detail. The focal properties of such optimised lenses have been computed and compared.
Resumo:
This investigation looks critically at conventional magnetic lenses in the light of present-day technology with the aim of advancing electron microscopy in its broadest sense. By optimising the cooling arrangements and heat transfer characteristics of lens windings it was possible to increase substantially the current density in the winding, and achieve a large reduction in the size of conventional magnetic electron lenses. Following investigations into the properties of solenoidal lenses, a new type of lens with only one pole-piece was developed. The focal properties of such lenses, which differ considerably from those.of conventional lenses, have been derived from a combination of mathematical models and experimentally measured axial flux density distributions. These properties can be profitably discussed with reference to "half-lenses". Miniature conventional twin pole-piece lenses and the proposed radial field single pole-piece lenses have been designed and constructed and both types of lenses have been evaluated by constructing miniature electron optical columns. A miniature experimental transmission electron microscope (TEM), a miniature scanning electron microscope (SEM) and a scanning transmission microscope (STEM) have been built. A single pole-piece miniature one million volt projector lens of only lOcm diameter and weighing 2.lkg was designed, built and tested at 1 million volts in a commercial electron microscope. iii. Preliminary experiments indicate that in single pole lenses it is possible to extract secondary electrons from the specimen in spite of the presence of the magnetic field of the probe-forming lens. This may well be relevant for the SEM in which it is desirable to examine a large specimen at a moderately good resolution.
Resumo:
The thesis is concerned with the electron properties of single-polepiece magnetic electron lenses especially under conditions of extreme polepiece saturation. The electron optical properties are first analysed under conditions of high polepiece permeability. From this analysis, a general idea can be obtained of the important parameters that affect ultimate lens performance. In addition, useful information is obtained concerning the design of improved lenses operating under conditions of extreme polepiece saturation, for example at flux densities of the order of 10 Tesla. It is shown that in a single-polepiece lens , the position and shape of the lens exciting coil plays an important role. In particular, the maximum permissible current density in the windings,rather than the properties of the iron, can set a limit to lens performance. This factor was therefore investigated in some detail. The axial field distribution of a single-polepiece lens, unlike that of a conventional lens, is highly asymmetrical. There are therefore two possible physical arrangements of the lens with respect to the incoming electron beam. In general these two orientations will result in different aberration coefficients. This feature has also been investigated in some detail. Single-pole piece lenses are thus considerably more complicated electron- optically than conventional double polepiece lenses. In particular, the absence of the usual second polepiece causes most of the axial magnetic flux density distribution to lie outside the body of the lens. This can have many advantages in electron microscopy but it creates problems in calculating the magnetic field distribution. In particular, presently available computer programs are liable to be considerably in error when applied to such structures. It was therefore necessary to find independent ways of checking the field calculations. Furthermore, if the polepiece is allowed to saturate, much more calculation is involved since the field distribution becomes a non-linear function of the lens excitation. In searching for optimum lens designs, care was therefore taken to ensure that the coil was placed in the optimum position. If this condition is satisfied there seems to be no theoretical limit to the maximum flux density that can be attained at the polepiece tip. However , under iron saturation condition, some broadening of the axial field distribution will take place, thereby changing the lens aberrations . Extensive calculations were therefore made to find the minimum spherical and chromatic aberration coefficients . The focal properties of such lens designs are presented and compared with the best conventional double-polepiece lenses presently available.