12 resultados para Lenin, V.I.
em Aston University Research Archive
Resumo:
The social processes involved in engaging small groups of 3-15 managers in their sharing, organising, acquiring, creating and using knowledge can be supported with software and facilitator assistance. This paper introduces three such systems that we have used as facilitators to support groups of managers in their social process of decision-making by managing knowledge during face-to-face meetings. The systems include Compendium, Group Explorer (with Decision Explorer) and V*I*S*A. We review these systems for group knowledge management where the aim is for better decision-making, and discuss the principles of deploying each in a group meeting. © 2006 Operational Research Society Ltd. All rights reserved.
Resumo:
We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.
Resumo:
We propose the design of a novel ?-shaped fiber laser resonator and apply it to build a long-cavity normaldispersion mode-locked Er-fiber laser which features enhanced functionalities for management and optimization of pulsed lasing regimes. We report the generation of sub-nanosecond pulses with the energy of ~0.5 µJ at a kilohertz-scale repetition rate in an all-fiber system based on the new laser design. A combination of special design solutions in the laser, such as polarization instability compensation in the ultra-long arm of the resonator, intra-cavity spectral selection of radiation with a broadband fiber Bragg grating, and polarization selection by means of a tilted refractive index grating, ensures low amplified spontaneous emission (ASE) noise and high stability of the laser system output parameters.
Resumo:
We report on recent progress in the generation of non-diffracting (Bessel) beams from semiconductor light sources including both edge-emitting and surface-emitting semiconductor lasers as well as light-emitting diodes (LEDs). Bessel beams at the power level of Watts with central lobe diameters of a few to tens of micrometers were achieved from compact and highly efficient lasers. The practicality of reducing the central lobe size of the Bessel beam generated with high-power broad-stripe semiconductor lasers and LEDs to a level unachievable by means of traditional focusing has been demonstrated. We also discuss an approach to exceed the limit of power density for the focusing of radiation with high beam propagation parameter M2. Finally, we consider the potential of the semiconductor lasers for applications in optical trapping/tweezing and the perspectives to replace their gas and solid-state laser counterparts for a range of implementations in optical manipulation towards lab-on-chip configurations. © 2014 Elsevier Ltd.
Resumo:
The problem of strongly correlated electrons in one dimension attracted attention of condensed matter physicists since early 50’s. After the seminal paper of Tomonaga [1] who suggested the first soluble model in 1950, there were essential achievements reflected in papers by Luttinger [2] (1963) and Mattis and Lieb [3] (1963). A considerable contribution to the understanding of generic properties of the 1D electron liquid has been made by Dzyaloshinskii and Larkin [4] (1973) and Efetov and Larkin [5] (1976). Despite the fact that the main features of the 1D electron liquid were captured and described by the end of 70’s, the investigators felt dissatisfied with the rigour of the theoretical description. The most famous example is the paper by Haldane [6] (1981) where the author developed the fundamentals of a modern bosonisation technique, known as the operator approach. This paper became famous because the author has rigourously shown how to construct the Fermi creation/anihilation operators out of the Bose ones. The most recent example of such a dissatisfaction is the review by von Delft and Schoeller [7] (1998) who revised the approach to the bosonisation and came up with what they called constructive bosonisation.
Resumo:
Many applications of high-power laser diodes demand tight focusing. This is often not possible due to the multimode nature of semiconductor laser radiation possessing beam propagation parameter M2 values in double-digits. We propose a method of 'interference' superfocusing of high-M2 diode laser beams with a technique developed for the generation of Bessel beams based on the employment of an axicon fabricated on the tip of a 100 μm diameter optical fiber with highprecision direct laser writing. Using axicons with apex angle 140º and rounded tip area as small as 10 μm diameter, we demonstrate 2-4 μm diameter focused laser 'needle' beams with approximately 20 μm propagation length generated from multimode diode laser with beam propagation parameter M2=18 and emission wavelength of 960 nm. This is a few-fold reduction compared to the minimal focal spot size of 11 μm that could be achieved if focused by an 'ideal' lens of unity numerical aperture. The same technique using a 160º axicon allowed us to demonstrate few-μm-wide laser 'needle' beams with nearly 100 μm propagation length with which to demonstrate optical trapping of 5-6 μm rat blood red cells in a water-heparin solution. Our results indicate the good potential of superfocused diode laser beams for applications relating to optical trapping and manipulation of microscopic objects including living biological objects with aspirations towards subsequent novel lab-on-chip configurations.