12 resultados para Left-hemisphere Stroke

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many cognitive neuroscience studies show that the ability to attend to and identify global or local information is lateralised between the two hemispheres in the human brain; the left hemisphere is biased towards the local level, whereas the right hemisphere is biased towards the global level. Results of two studies show attention-focused people with a right ear preference (biased towards the left hemisphere) are better at local tasks, whereas people with a left ear preference (biased towards the right hemisphere) are better at more global tasks. In a third study we determined if right hemisphere-biased followers who attend to global stimuli are likely to have a stronger relationship between attention and globally based supervisor ratings of performance. Results provide evidence in support of this hypothesis. Our research supports our model and suggests that the interaction between attention and lateral preference is an important and novel predictor of work-related outcomes. © 2012 Copyright Psychology Press Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives Ecstasy is a recreational drug whose active ingredient, 3,4-methylenedioxymethamphetamine (MDMA), acts predominantly on the serotonergic system. Although MDMA is known to be neurotoxic in animals, the long-term effects of recreational Ecstasy use in humans remain controversial but one commonly reported consequence is mild cognitive impairment particularly affecting verbal episodic memory. Although event-related potentials (ERPs) have made significant contributions to our understanding of human memory processes, until now they have not been applied to study the long-term effects of Ecstasy. The aim of this study was to examine the effects of past Ecstasy use on recognition memory for both verbal and non-verbal stimuli using ERPs. Methods We compared the ERPs of 15 Ecstasy/polydrug users with those of 14 cannabis users and 13 non-illicit drug users as controls. Results Despite equivalent memory performance, Ecstasy/polydrug users showed an attenuated late positivity over left parietal scalp sites, a component associated with the specific memory process of recollection. Conlusions This effect was only found in the word recognition task which is consistent with evidence that left hemisphere cognitive functions are disproportionately affected by Ecstasy, probably because the serotonergic system is laterally asymmetrical. Experimentally, decreasing central serotonergic activity through acute tryptophan depletion also selectively impairs recollection, and this too suggests the importance of the serotonergic system. Overall, our results suggest that Ecstasy users, who also use a wide range of other drugs, show a durable abnormality in a specific ERP component thought to be associated with recollection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last decade we have seen an exponential growth of functional imaging studies investigating multiple aspects of language processing. These studies have sparked an interest in applying some of the paradigms to various clinically relevant questions, such as the identification of the cortical regions mediating language function in surgical candidates for refractory epilepsy. Here we present data from a group of adult control participants in order to investigate the potential of using frequency specific spectral power changes in MEG activation patterns to establish lateralisation of language function using expressive language tasks. In addition, we report on a paediatric patient whose language function was assessed before and after a left hemisphere amygdalo-hippocampectomy. Our verb generation task produced left hemisphere decreases in beta-band power accompanied by right hemisphere increases in low beta-band power in the majority of the control group, a previously unreported phenomenon. This pattern of spectral power was also found in the patient's post-surgery data, though not her pre-surgery data. Comparison of pre and post-operative results also provided some evidence of reorganisation in language related cortex both inter- and intra-hemispherically following surgery. The differences were not limited to changes in localisation of language specific cortex but also changes in the spectral and temporal profile of frontal brain regions during verb generation. While further investigation is required to establish concordance with invasive measures, our data suggest that the methods described may serve as a reliable lateralisation marker for clinical assessment. Furthermore, our findings highlight the potential utility of MEG for the investigation of cortical language functioning in both healthy development and pathology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We used magnetoencephalography (MEG) to map the spatiotemporal evolution of cortical activity for visual word recognition. We show that for five-letter words, activity in the left hemisphere (LH) fusiform gyrus expands systematically in both the posterior-anterior and medial-lateral directions over the course of the first 500 ms after stimulus presentation. Contrary to what would be expected from cognitive models and hemodynamic studies, the component of this activity that spatially coincides with the visual word form area (VWFA) is not active until around 200 ms post-stimulus, and critically, this activity is preceded by and co-active with activity in parts of the inferior frontal gyrus (IFG, BA44/6). The spread of activity in the VWFA for words does not appear in isolation but is co-active in parallel with spread of activity in anterior middle temporal gyrus (aMTG, BA 21 and 38), posterior middle temporal gyrus (pMTG, BA37/39), and IFG. © 2004 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The visual evoked magnetic response CIIm component to a pattern onset stimulus presented half field produced a consistent scalp topography in 15 normal subjects. The major response was seen over the contralateral hemisphere, suggesting a dipole with current flowing away from the medial surface of the brain. Full field responses were more unpredictable. The reponses of five subjects were studied to the onset of a full, left half and right half checkerboard stimuli of 38 x 27 min arc checks appearing for 200 ms. In two subjects the full field CIIm topography was consistent with that of the mathematical summation of their relevant half field distribution. The remaining subjects had unpredictable full field topographies, showing little or no relationship to their half or summated half fields. In each of these subjects, a distribution matching that of the summated half field CIIm distribution appears at an earlier latency than that of the predominant full field waveform peak. By examining the topography of the full and half field responses at 5 ms intervals along the waveform for one such subject, the CIIm topography of the right hemisphere develops 10 ms before that of the left hemisphere, and is replaced by the following CIIIm component 20 ms earlier. Hence, the large peak seen in full field results from a combination of the CIIm component of the left hemisphere plus that of the CIIIm from the right. The earlier peak results from the CIIm generated in both hemispheres, at a latency where both show similar amplitudes. As the relative amplitudes of these two peaks alter with check and field size, topographic studies would be required for accurate CIIm identification. In addition. the CIIm-CIIIm complex lasts for 80 ms in the right hemisphere and 135 ms in the left, suggesting hemispherical apecialization in the visual processing of the pattern onset response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis attempts a psychological investigation of hemispheric functioning in developmental dyslexia. Previous work using neuropsychological methods with developmental dyslexics is reviewed ,and original work is presented both of a conventional psychometric nature and also utilising a new means of intervention. At the inception of inquiry into dyslexia, comparisons were drawn between developmental dyslexia and acquired alexia, promoting a model of brain damage as the common cause. Subsequent investigators found developmental dyslexics to be neurologically intact, and so an alternative hypothesis was offered, namely that language is abnormally localized (not in the left hemisphere). Research in the last decade, using the advanced techniques of modern neuropsychology, has indicated that developmental dyslexics are probably left hemisphere dominant for language. The development of a new type of pharmaceutical prep~ration (that appears to have a left hemisphere effect) offers an oppertunity to test the experimental hypothesis. This hypothesis propounds that most dyslexics are left hemisphere language dominant, but some of these language related operations are dysfunctioning. The methods utilised are those of psychological assessment of cognitive function, both in a traditional psychometric situation, and with a new form of intervention (Piracetam). The information resulting from intervention will be judged on its therapeutic validity and contribution to the understanding of hemispheric functioning in dyslexics. The experimental studies using conventional psychometric evaluation revealed a dyslexic profile of poor sequencing and name coding ability, with adequate spatial and verbal reasoning skills. Neuropsychological information would tend to suggest that this profile was indicative of adequate right hemsiphere abilities and deficits in some left hemsiphere abilities. When an intervention agent (Piracetam) was used with young adult dyslexics there were improvements in both the rate of acquisition and conservation of verbal learning. An experimental study with dyslexic children revealed that Piracetam appeared to improve reading, writing and sequencing, but did not influence spatial abilities. This would seem to concord with other recent findings, that deve~mental dyslexics may have left hemisphere language localisation, although some of these language related abilities are dysfunctioning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic factors are important in the etiology of bipolar disorder (BD). However, first-degree relatives of BD patients are at risk for a number of psychiatric conditions, most commonly major depressive disorder (MDD), although the majority remain well. The purpose of the present study was to identify potential brain structural correlates for risk and resilience to mood disorders in patients with BD, type I (BD-I) and their relatives. Structural magnetic resonance imaging scans were acquired from 30 patients with BD-I, 50 of their firstdegree relatives (28 had no Axis I disorder, while 14 had MDD) and 52 controls. We used voxel-based morphometry, implemented in SPM5 to identify group differences in regional gray matter volume. From the identified clusters, potential differences were further examined based on diagnostic status (BD-I patients, MDD relatives, healthy relatives, controls). Whole-brain voxel-based analysis identified group differences in the left hemisphere in the insula, cerebellum, and substantia nigra. Increased left insula volume was associated with genetic preposition to BD-I independent of clinical phenotype. In contrast, increased left substantia nigra volume was observed in those with the clinical phenotype of BD-I. Changes uniquely associated with the absence of a clinical diagnosis in BD relatives were observed in the left cerebellum. Our data suggest that in BD, genetic and phenotype-related influences on brain structure are dissociable; if replicated, these findings may help with early identification of high-risk individuals who are more likely to transition to syndromal states. Copyright © 2009 Society for Neuroscience.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During search of the environment, the inhibition of the return (IOR) of attention to already-examined information ensures that the target will ultimately be detected. Until now, inhibition was assumed to support search of information during one processing episode. However, in some situations search may have to be completed long after it was begun. We therefore propose that inhibition can be associated with an episode encoded into memory such that later retrieval reinstates inhibitory processing and encourages examination of new information. In two experiments in which attention was drawn to face stimuli with an exogenous cue, we demonstrated for the first time the existence of long-term IOR. Interestingly, this was the case only for faces in the left visual field, perhaps because more efficient processing of faces in the right hemisphere than the left hemisphere results in richer, more retrievable memory representations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been proposed that language impairments in children with Autism Spectrum Disorders (ASD) stem from atypical neural processing of speech and/or nonspeech sounds. However, the strength of this proposal is compromised by the unreliable outcomes of previous studies of speech and nonspeech processing in ASD. The aim of this study was to determine whether there was an association between poor spoken language and atypical event-related field (ERF) responses to speech and nonspeech sounds in children with ASD (n = 14) and controls (n = 18). Data from this developmental population (ages 6-14) were analysed using a novel combination of methods to maximize the reliability of our findings while taking into consideration the heterogeneity of the ASD population. The results showed that poor spoken language scores were associated with atypical left hemisphere brain responses (200 to 400 ms) to both speech and nonspeech in the ASD group. These data support the idea that some children with ASD may have an immature auditory cortex that affects their ability to process both speech and nonspeech sounds. Their poor speech processing may impair their ability to process the speech of other people, and hence reduce their ability to learn the phonology, syntax, and semantics of their native language.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hemispheric differences in the learning and generalization of pattern categories were explored in two experiments involving sixteen patients with unilateral posterior, cerebral lesions in the left (LH) or right (RH) hemisphere. In each experiment participants were first trained to criterion in a supervised learning paradigm to categorize a set of patterns that either consisted of simple geometric forms (Experiment 1) or unfamiliar grey-level images (Experiment 2). They were then tested for their ability to generalize acquired categorical knowledge to contrast-reversed versions of the learning patterns. The results showed that RH lesions impeded category learning of unfamiliar grey-level images more severely than LH lesions, whereas this relationship appeared reversed for categories defined by simple geometric forms. With regard to generalization to contrast reversal, categorization performance of LH and RH patients was unaffected in the case of simple geometric forms. However, generalization to of contrast-reversed grey-level images distinctly deteriorated for patients with LH lesions relative to those with RH lesions, with the latter (but not the former) being consistently unable to identify the pattern manipulation. These findings suggest a differential use of contrast information in the representation of pattern categories in the two hemispheres. Such specialization appears in line with previous distinctions between a predominantly lefthemispheric, abstract-analytical and a righthemispheric, specific-holistic representation of object categories, and their prediction of a mandatory representation of contrast polarity in the RH. Some implications for the well-established dissociation of visual disorders for the recognition of faces and letters are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humans imitate biological movements faster than non-biological movements. The faster response has been attributed to an activation of the human mirror neuron system, which is thought to match observation and execution of actions. However, it is unclear which cortical areas are responsible for this behavioural advantage. Also, little is known about the timing of activations. Using whole-head magnetoencephalography we recorded neuronal responses to single biological finger movements and non-biological dot movements while the subjects were required to perform an imitation task or an observation task, respectively. Previous imaging studies on the human mirror neurone system suggested that activation in response to biological movements would be stronger in ventral premotor, parietal and superior temporal regions. In accordance with previous studies, reaction times to biological movements were faster than those to dot movements in all subjects. The analysis of evoked magnetic fields revealed that the reaction time benefit was paralleled by stronger and earlier activation of the left temporo-occipital cortex, right superior temporal area and right ventral motor/premotor area. The activity patterns suggest that the latter areas mediate the observed behavioural advantage of biological movements and indicate a predominant contribution of the right temporo-frontal hemisphere to action observation–execution matching processes in intransitive movements, which has not been reported previously.