4 resultados para Learning curve

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for one-dimensional Gaussian Processes. The analysis is carried out emphasising the effects induced on the bounds by the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on the tightness of the bounds are also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The assessment of the reliability of systems which learn from data is a key issue to investigate thoroughly before the actual application of information processing techniques to real-world problems. Over the recent years Gaussian processes and Bayesian neural networks have come to the fore and in this thesis their generalisation capabilities are analysed from theoretical and empirical perspectives. Upper and lower bounds on the learning curve of Gaussian processes are investigated in order to estimate the amount of data required to guarantee a certain level of generalisation performance. In this thesis we analyse the effects on the bounds and the learning curve induced by the smoothness of stochastic processes described by four different covariance functions. We also explain the early, linearly-decreasing behaviour of the curves and we investigate the asymptotic behaviour of the upper bounds. The effect of the noise and the characteristic lengthscale of the stochastic process on the tightness of the bounds are also discussed. The analysis is supported by several numerical simulations. The generalisation error of a Gaussian process is affected by the dimension of the input vector and may be decreased by input-variable reduction techniques. In conventional approaches to Gaussian process regression, the positive definite matrix estimating the distance between input points is often taken diagonal. In this thesis we show that a general distance matrix is able to estimate the effective dimensionality of the regression problem as well as to discover the linear transformation from the manifest variables to the hidden-feature space, with a significant reduction of the input dimension. Numerical simulations confirm the significant superiority of the general distance matrix with respect to the diagonal one.In the thesis we also present an empirical investigation of the generalisation errors of neural networks trained by two Bayesian algorithms, the Markov Chain Monte Carlo method and the evidence framework; the neural networks have been trained on the task of labelling segmented outdoor images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article investigates how firms manage outsourcing in situations of a non-developed supplier market. This study followed the initial outsourcing activities and strategies of two case companies in the wood product manufacturing industry. The findings show that greater focus needs to be placed on operational aspects associated with non-developed supplier markets, which contrasts with the traditional strategic view of outsourcing. For practitioners, this article suggests that it is important to emphasise that the learning curve for a supplier can be lengthy, and also that alternative outsourcing routes are available when outsourcing to a non-developed supplier market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the use of manifold learning techniques to enhance the separation properties of standard graph kernels. The idea stems from the observation that when we perform multidimensional scaling on the distance matrices extracted from the kernels, the resulting data tends to be clustered along a curve that wraps around the embedding space, a behavior that suggests that long range distances are not estimated accurately, resulting in an increased curvature of the embedding space. Hence, we propose to use a number of manifold learning techniques to compute a low-dimensional embedding of the graphs in an attempt to unfold the embedding manifold, and increase the class separation. We perform an extensive experimental evaluation on a number of standard graph datasets using the shortest-path (Borgwardt and Kriegel, 2005), graphlet (Shervashidze et al., 2009), random walk (Kashima et al., 2003) and Weisfeiler-Lehman (Shervashidze et al., 2011) kernels. We observe the most significant improvement in the case of the graphlet kernel, which fits with the observation that neglecting the locational information of the substructures leads to a stronger curvature of the embedding manifold. On the other hand, the Weisfeiler-Lehman kernel partially mitigates the locality problem by using the node labels information, and thus does not clearly benefit from the manifold learning. Interestingly, our experiments also show that the unfolding of the space seems to reduce the performance gap between the examined kernels.