53 resultados para Learning Analysis
em Aston University Research Archive
Resumo:
The port industry is facing a dramatic wave of changes that have transformed the structure of the industry. Modern seaports are increasingly shifting from a “hardware-based” approach towards “knowhow intensive” configuration. In this context knowledge resources, learning processes and training initiatives increasingly represent key elements to guarantee the quality of service supplied and hence the competitiveness of modern seaport communities. This paper describes the learning needs analysis conducted amongst key port community actors in three ports in the south east of Ireland during 2005 in the context of the I-Sea.Net project. It goes on to describe the learning requirements report and the training design carried out based on this analysis.
Resumo:
In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.
Resumo:
This study presents a meta-analysis synthesizing the existing research on the effectiveness of workplace coaching. We exclusively explore workplace coaching provided by internal or external coaches and therefore exclude cases of manager-subordinate and peer coaching. We propose a framework of potential outcomes from coaching in organizations, which we examine meta-analytically (k = 17). Our analyses indicated that coaching had positive effects on organizational outcomes overall (δ = 0.36), and on specific forms of outcome criteria (skill-based δ = 0.28; affective δ = 0.51; individual-level results δ = 1.24). We also examined moderation by a number of coaching practice factors (use of multisource feedback; type of coach; coaching format; longevity of coaching). Our analyses of practice moderators indicated a significant moderation of effect size for type of coach (with effects being stronger for internal coaches compared to external coaches) and use of multisource feedback (with the use of multisource feedback resulting in smaller positive effects). We found no moderation of effect size by coaching format (comparing face-to-face, with blended face-to-face and e-coaching) or duration of coaching (number of sessions or longevity of intervention). The effect sizes give support to the potential utility of coaching in organizations. Implications for coaching research and practice are discussed.
Resumo:
The extant literature on workplace coaching is characterised by a lack of theoretical and empirical understanding regarding the effectiveness of coaching as a learning and development tool; the types of outcomes one can expect from coaching; the tools that can be used to measure coaching outcomes; the underlying processes that explain why and how coaching works and the factors that may impact on coaching effectiveness. This thesis sought to address these substantial gaps in the literature with three linked studies. Firstly, a meta-analysis of workplace coaching effectiveness (k = 17), synthesizing the existing research was presented. A framework of coaching outcomes was developed and utilised to code the studies. Analysis indicated that coaching had positive effects on all outcomes. Next, the framework of outcomes was utilised as the deductive start-point to the development of the scale measuring perceived coaching effectiveness. Utilising a multi-stage approach (n = 201), the analysis indicated that perceived coaching effectiveness may be organised into a six factor structure: career clarity; team performance; work well-being; performance; planning and organizing and personal effectiveness and adaptability. The final study was a longitudinal field experiment to test a theoretical model of individual differences and coaching effectiveness developed in this thesis. An organizational sample of 84 employees each participated in a coaching intervention, completed self-report surveys, and had their job performance rated by peers, direct reports and supervisors (a total of 352 employees provided data on participant performance). The results demonstrate that compared to a control group, the coaching intervention generated a number of positive outcomes. The analysis indicated that coachees’ enthusiasm, intellect and orderliness influenced the impact of coaching on outcomes. Mediation analysis suggested that mastery goal orientation, performance goal orientation and approach motivation in the form of behavioural activation system (BAS) drive, were significant mediators between personality and outcomes. Overall, the findings of this thesis make an original contribution to the understanding of the types of outcomes that can be expected from coaching, and the magnitude of impact coaching has on outcomes. The thesis also provides a tool for reliably measuring coaching effectiveness and a theoretical model to understand the influence of coachee individual differences on coaching outcomes.
Resumo:
We investigated family members’ lived experience of Parkinson’s disease (PD) aiming to investigate opportunities for well-being. A lifeworld-led approach to healthcare was adopted. Interpretative phenomenological analysis was used to explore in-depth interviews with people living with PD and their partners. The analysis generated four themes: It’s more than just an illness revealed the existential challenge of diagnosis; Like a bird with a broken wing emphasizing the need to adapt to increasing immobility through embodied agency; Being together with PD exploring the kinship within couples and belonging experienced through support groups; and Carpe diem! illuminated the significance of time and fractured future orientation created by diagnosis. Findings were interpreted using an existential-phenomenological theory of well-being. We highlighted how partners shared the impact of PD in their own ontological challenges. Further research with different types of families and in different situations is required to identify services required to facilitate the process of learning to live with PD. Care and support for the family unit needs to provide emotional support to manage threats to identity and agency alongside problem-solving for bodily changes. Adopting a lifeworld-led healthcare approach would increase opportunities for well-being within the PD illness journey.
Resumo:
In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.
Resumo:
An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.
Resumo:
On-line learning is examined for the radial basis function network, an important and practical type of neural network. The evolution of generalization error is calculated within a framework which allows the phenomena of the learning process, such as the specialization of the hidden units, to be analyzed. The distinct stages of training are elucidated, and the role of the learning rate described. The three most important stages of training, the symmetric phase, the symmetry-breaking phase, and the convergence phase, are analyzed in detail; the convergence phase analysis allows derivation of maximal and optimal learning rates. As well as finding the evolution of the mean system parameters, the variances of these parameters are derived and shown to be typically small. Finally, the analytic results are strongly confirmed by simulations.
Resumo:
In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for one-dimensional Gaussian Processes. The analysis is carried out emphasising the effects induced on the bounds by the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on the tightness of the bounds are also discussed.
Resumo:
On-line learning is one of the most powerful and commonly used techniques for training large layered networks and has been used successfully in many real-world applications. Traditional analytical methods have been recently complemented by ones from statistical physics and Bayesian statistics. This powerful combination of analytical methods provides more insight and deeper understanding of existing algorithms and leads to novel and principled proposals for their improvement. This book presents a coherent picture of the state-of-the-art in the theoretical analysis of on-line learning. An introduction relates the subject to other developments in neural networks and explains the overall picture. Surveys by leading experts in the field combine new and established material and enable non-experts to learn more about the techniques and methods used. This book, the first in the area, provides a comprehensive view of the subject and will be welcomed by mathematicians, scientists and engineers, whether in industry or academia.
Resumo:
We study the dynamics of on-line learning in multilayer neural networks where training examples are sampled with repetition and where the number of examples scales with the number of network weights. The analysis is carried out using the dynamical replica method aimed at obtaining a closed set of coupled equations for a set of macroscopic variables from which both training and generalization errors can be calculated. We focus on scenarios whereby training examples are corrupted by additive Gaussian output noise and regularizers are introduced to improve the network performance. The dependence of the dynamics on the noise level, with and without regularizers, is examined, as well as that of the asymptotic values obtained for both training and generalization errors. We also demonstrate the ability of the method to approximate the learning dynamics in structurally unrealizable scenarios. The theoretical results show good agreement with those obtained by computer simulations.
Resumo:
In this paper we review recent theoretical approaches for analysing the dynamics of on-line learning in multilayer neural networks using methods adopted from statistical physics. The analysis is based on monitoring a set of macroscopic variables from which the generalisation error can be calculated. A closed set of dynamical equations for the macroscopic variables is derived analytically and solved numerically. The theoretical framework is then employed for defining optimal learning parameters and for analysing the incorporation of second order information into the learning process using natural gradient descent and matrix-momentum based methods. We will also briefly explain an extension of the original framework for analysing the case where training examples are sampled with repetition.
Resumo:
Original Paper European Journal of Information Systems (2001) 10, 135–146; doi:10.1057/palgrave.ejis.3000394 Organisational learning—a critical systems thinking discipline P Panagiotidis1,3 and J S Edwards2,4 1Deloitte and Touche, Athens, Greece 2Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK Correspondence: Dr J S Edwards, Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK. E-mail: j.s.edwards@aston.ac.uk 3Petros Panagiotidis is Manager responsible for the Process and Systems Integrity Services of Deloitte and Touche in Athens, Greece. He has a BSc in Business Administration and an MSc in Management Information Systems from Western International University, Phoenix, Arizona, USA; an MSc in Business Systems Analysis and Design from City University, London, UK; and a PhD degree from Aston University, Birmingham, UK. His doctorate was in Business Systems Analysis and Design. His principal interests now are in the ERP/DSS field, where he serves as project leader and project risk managment leader in the implementation of SAP and JD Edwards/Cognos in various major clients in the telecommunications and manufacturing sectors. In addition, he is responsible for the development and application of knowledge management systems and activity-based costing systems. 4John S Edwards is Senior Lecturer in Operational Research and Systems at Aston Business School, Birmingham, UK. He holds MA and PhD degrees (in mathematics and operational research respectively) from Cambridge University. His principal research interests are in knowledge management and decision support, especially methods and processes for system development. He has written more than 30 research papers on these topics, and two books, Building Knowledge-based Systems and Decision Making with Computers, both published by Pitman. Current research work includes the effect of scale of operations on knowledge management, interfacing expert systems with simulation models, process modelling in law and legal services, and a study of the use of artifical intelligence techniques in management accounting. Top of pageAbstract This paper deals with the application of critical systems thinking in the domain of organisational learning and knowledge management. Its viewpoint is that deep organisational learning only takes place when the business systems' stakeholders reflect on their actions and thus inquire about their purpose(s) in relation to the business system and the other stakeholders they perceive to exist. This is done by reflecting both on the sources of motivation and/or deception that are contained in their purpose, and also on the sources of collective motivation and/or deception that are contained in the business system's purpose. The development of an organisational information system that captures, manages and institutionalises meaningful information—a knowledge management system—cannot be separated from organisational learning practices, since it should be the result of these very practices. Although Senge's five disciplines provide a useful starting-point in looking at organisational learning, we argue for a critical systems approach, instead of an uncritical Systems Dynamics one that concentrates only on the organisational learning practices. We proceed to outline a methodology called Business Systems Purpose Analysis (BSPA) that offers a participatory structure for team and organisational learning, upon which the stakeholders can take legitimate action that is based on the force of the better argument. In addition, the organisational learning process in BSPA leads to the development of an intrinsically motivated information organisational system that allows for the institutionalisation of the learning process itself in the form of an organisational knowledge management system. This could be a specific application, or something as wide-ranging as an Enterprise Resource Planning (ERP) implementation. Examples of the use of BSPA in two ERP implementations are presented.