2 resultados para Lean mass
em Aston University Research Archive
Resumo:
Aim: N-3 fatty acids, especially eicosapentaenoic acid (EPA), may possess anticachectic properties. This trial compared a protein and energy dense supplement enriched with n-3 fatty acids and antioxidants (experimental: E) with an isocaloric isonitrogenous control supplement (C) for their effects on weight, lean body mass (LBM), dietary intake, and quality of life in cachectic patients with advanced pancreatic cancer. Methods: A total of 200 patients (95 E; 105 C) were randomised to consume two cans/day of the E or C supplement (480 ml, 620 kcal, 32 g protein ± 2.2 g EPA) for eight weeks in a multicentre, randomised, double blind trial. Results: At enrolment, patients' mean rate of weight loss was 3.3 kg/month. Intake of the supplements (E or C) was below the recommended dose (2 cans/day) and averaged 1.4 cans/day. Over eight weeks, patients in both groups stopped losing weight (Δweight E: -0.25 kg/month versus C: -0.37 kg/month; p=0.74) and LBM (ΔLBM E: +0.27 kg/month versus C: +0.12 kg/month; p=0.88) to an equal degree (change from baseline E and C, p<0.001). In view of evident non-compliance in both E and C groups, correlation analyses were undertaken to examine for potential dose-response relationships. E patients demonstrated significant correlations between their supplement intake and weight gain (r=0.50, p<0.001) and increase in LBM (r=0.33, p=0.036). Such correlations were not statistically significant in C patients. The relationship of supplement intake with change in LBM was significantly different between E and C patients (p=0.043). Increased plasma EPA levels in the E group were associated with weight and LBM gain (r=0.50, p<0.001; r=0.51, p=0.001). Weight gain was associated with improved quality of life (p<0.01) only in the E group. Conclusion: Intention to treat group comparisons indicated that at the mean dose taken, enrichment with n-3 fatty acids did not provide a therapeutic advantage and that both supplements were equally effective in arresting weight loss. Post hoc dose-response analysis suggests that if taken in sufficient quantity, only the n-3 fatty acid enriched energy and protein dense supplement results in net gain of weight, lean tissue, and improved quality of life. Further trials are required to examine the potential role of n-3 enriched supplements in the treatment of cancer cachexia.
Resumo:
Oxidised biomolecules in aged tissue could potentially be used as biomarkers for age-related diseases; however, it is still unclear whether they causatively contribute to ageing or are consequences of the ageing process. To assess the potential of using protein oxidation as markers of ageing, mass spectrometry (MS) was employed for the identification and quantification of oxidative modifications in obese (ob/ob) mice. Lean muscle mass and strength is reduced in obesity, representing a sarcopenic model in which the levels of oxidation can be evaluated for different muscular systems including calcium homeostasis, metabolism and contractility. Several oxidised residues were identified by tandem MS (MS/MS) in both muscle homogenate and isolated sarcoplasmic reticulum (SR), an organelle that regulates intracellular calcium levels in muscle. These modifications include oxidation of methionine, cysteine, tyrosine, and tryptophan in several proteins such as sarcoplasmic reticulum calcium ATPase (SERCA), glycogen phosphorylase, and myosin. Once modifications had been identified, multiple reaction monitoring MS (MRM) was used to quantify the percentage modification of oxidised residues within the samples. Preliminary data suggests proteins in ob/ob mice are more oxidised than the controls. For example SERCA, which constitutes 60-70% of the SR, had approximately a 2-fold increase in cysteine trioxidation of Cys561 in the obese model when compared to the control. Other obese muscle proteins have also shown a similar increase in oxidation for various residues. Further analysis with complex protein mixtures will determine the potential diagnostic use of MRM experiments for analysing protein oxidation in small biological samples such as muscle needle biopsies.