2 resultados para Latini, Brunetto, 1220-1295.
em Aston University Research Archive
Resumo:
The aim of this study was to develop and characterize an intranasal delivery system for amantadine hydrochloride (AMT). Optimal formulations consisted of a thermosensitive polymer Pluronic® 127 and either carboxymethyl cellulose or chitosan which demonstrated gel transition at nasal cavity temperatures (34 ± 1°C). Rheologically, the loss tangent (Tan δ) confirmed a 3-stage gelation phenomena at 34 ± 1°C and non-Newtonian behavior. Storage of optimized formulation carboxymethyl cellulose and optimal formulation chitosan at 4°C for 8 weeks resulted in repeatable release profiles at 34°C when sampled, with a Fickian mechanism earlier on but moving toward anomalous transport by week 8. Polymers (Pluronic® 127, carboxymethyl cellulose, and chitosan) demonstrated no significant cellular toxicity to human nasal epithelial cells up to 4 mg/mL and up to 1 mM for AMT (IC50: 4.5 ± 0.05 mM). Optimized formulation carboxymethyl cellulose and optimal formulation chitosan demonstrated slower release across an in vitro human nasal airway model (43%-44% vs 79 ± 4.58% for AMT). Using a human nasal cast model, deposition into the olfactory regions (potential nose-to-brain) was demonstrated on nozzle insertion (5 mm), whereas tilting of the head forward (15°) resulted in greater deposition in the bulk of the nasal cavity.
Resumo:
The field of free radical biology and medicine continues to move at a tremendous pace, with a constant flow of ground-breaking discoveries. The following collection of papers in this issue of Biochemical Society Transactions highlights several key areas of topical interest, including the crucial role of validated measurements of radicals and reactive oxygen species in underpinning nearly all research in the field, the important advances being made as a result of the overlap of free radical research with the reinvigorated field of lipidomics (driven in part by innovations in MS-based analysis), the acceleration of new insights into the role of oxidative protein modifications (particularly to cysteine residues) in modulating cell signalling, and the effects of free radicals on the functions of mitochondria, extracellular matrix and the immune system. In the present article, we provide a brief overview of these research areas, but, throughout this discussion, it must be remembered that it is the availability of reliable analytical methodologies that will be a key factor in facilitating continuing developments in this exciting research area.