43 resultados para Language processing
em Aston University Research Archive
Resumo:
The main argument of this paper is that Natural Language Processing (NLP) does, and will continue to, underlie the Semantic Web (SW), including its initial construction from unstructured sources like the World Wide Web (WWW), whether its advocates realise this or not. Chiefly, we argue, such NLP activity is the only way up to a defensible notion of meaning at conceptual levels (in the original SW diagram) based on lower level empirical computations over usage. Our aim is definitely not to claim logic-bad, NLP-good in any simple-minded way, but to argue that the SW will be a fascinating interaction of these two methodologies, again like the WWW (which has been basically a field for statistical NLP research) but with deeper content. Only NLP technologies (and chiefly information extraction) will be able to provide the requisite RDF knowledge stores for the SW from existing unstructured text databases in the WWW, and in the vast quantities needed. There is no alternative at this point, since a wholly or mostly hand-crafted SW is also unthinkable, as is a SW built from scratch and without reference to the WWW. We also assume that, whatever the limitations on current SW representational power we have drawn attention to here, the SW will continue to grow in a distributed manner so as to serve the needs of scientists, even if it is not perfect. The WWW has already shown how an imperfect artefact can become indispensable.
Resumo:
Procedural knowledge is the knowledge required to perform certain tasks, and forms an important part of expertise. A major source of procedural knowledge is natural language instructions. While these readable instructions have been useful learning resources for human, they are not interpretable by machines. Automatically acquiring procedural knowledge in machine interpretable formats from instructions has become an increasingly popular research topic due to their potential applications in process automation. However, it has been insufficiently addressed. This paper presents an approach and an implemented system to assist users to automatically acquire procedural knowledge in structured forms from instructions. We introduce a generic semantic representation of procedures for analysing instructions, using which natural language techniques are applied to automatically extract structured procedures from instructions. The method is evaluated in three domains to justify the generality of the proposed semantic representation as well as the effectiveness of the implemented automatic system.
Resumo:
Humans are especially good at taking another's perspective-representing what others might be thinking or experiencing. This "mentalizing" capacity is apparent in everyday human interactions and conversations. We investigated its neural basis using magnetoencephalography. We focused on whether mentalizing was engaged spontaneously and routinely to understand an utterance's meaning or largely on-demand, to restore "common ground" when expectations were violated. Participants conversed with 1 of 2 confederate speakers and established tacit agreements about objects' names. In a subsequent "test" phase, some of these agreements were violated by either the same or a different speaker. Our analysis of the neural processing of test phase utterances revealed recruitment of neural circuits associated with language (temporal cortex), episodic memory (e.g., medial temporal lobe), and mentalizing (temporo-parietal junction and ventromedial prefrontal cortex). Theta oscillations (3-7 Hz) were modulated most prominently, and we observed phase coupling between functionally distinct neural circuits. The episodic memory and language circuits were recruited in anticipation of upcoming referring expressions, suggesting that context-sensitive predictions were spontaneously generated. In contrast, the mentalizing areas were recruited on-demand, as a means for detecting and resolving perceived pragmatic anomalies, with little evidence they were activated to make partner-specific predictions about upcoming linguistic utterances.
Resumo:
In the last decade we have seen an exponential growth of functional imaging studies investigating multiple aspects of language processing. These studies have sparked an interest in applying some of the paradigms to various clinically relevant questions, such as the identification of the cortical regions mediating language function in surgical candidates for refractory epilepsy. Here we present data from a group of adult control participants in order to investigate the potential of using frequency specific spectral power changes in MEG activation patterns to establish lateralisation of language function using expressive language tasks. In addition, we report on a paediatric patient whose language function was assessed before and after a left hemisphere amygdalo-hippocampectomy. Our verb generation task produced left hemisphere decreases in beta-band power accompanied by right hemisphere increases in low beta-band power in the majority of the control group, a previously unreported phenomenon. This pattern of spectral power was also found in the patient's post-surgery data, though not her pre-surgery data. Comparison of pre and post-operative results also provided some evidence of reorganisation in language related cortex both inter- and intra-hemispherically following surgery. The differences were not limited to changes in localisation of language specific cortex but also changes in the spectral and temporal profile of frontal brain regions during verb generation. While further investigation is required to establish concordance with invasive measures, our data suggest that the methods described may serve as a reliable lateralisation marker for clinical assessment. Furthermore, our findings highlight the potential utility of MEG for the investigation of cortical language functioning in both healthy development and pathology.
Resumo:
Models are central tools for modern scientists and decision makers, and there are many existing frameworks to support their creation, execution and composition. Many frameworks are based on proprietary interfaces, and do not lend themselves to the integration of models from diverse disciplines. Web based systems, or systems based on web services, such as Taverna and Kepler, allow composition of models based on standard web service technologies. At the same time the Open Geospatial Consortium has been developing their own service stack, which includes the Web Processing Service, designed to facilitate the executing of geospatial processing - including complex environmental models. The current Open Geospatial Consortium service stack employs Extensible Markup Language as a default data exchange standard, and widely-used encodings such as JavaScript Object Notation can often only be used when incorporated with Extensible Markup Language. Similarly, no successful engagement of the Web Processing Service standard with the well-supported technologies of Simple Object Access Protocol and Web Services Description Language has been seen. In this paper we propose a pure Simple Object Access Protocol/Web Services Description Language processing service which addresses some of the issues with the Web Processing Service specication and brings us closer to achieving a degree of interoperability between geospatial models, and thus realising the vision of a useful 'model web'.
Resumo:
This paper aims to identify the communication goal(s) of a user's information-seeking query out of a finite set of within-domain goals in natural language queries. It proposes using Tree-Augmented Naive Bayes networks (TANs) for goal detection. The problem is formulated as N binary decisions, and each is performed by a TAN. Comparative study has been carried out to compare the performance with Naive Bayes, fully-connected TANs, and multi-layer neural networks. Experimental results show that TANs consistently give better results when tested on the ATIS and DARPA Communicator corpora.
Resumo:
Automatic ontology building is a vital issue in many fields where they are currently built manually. This paper presents a user-centred methodology for ontology construction based on the use of Machine Learning and Natural Language Processing. In our approach, the user selects a corpus of texts and sketches a preliminary ontology (or selects an existing one) for a domain with a preliminary vocabulary associated to the elements in the ontology (lexicalisations). Examples of sentences involving such lexicalisation (e.g. ISA relation) in the corpus are automatically retrieved by the system. Retrieved examples are validated by the user and used by an adaptive Information Extraction system to generate patterns that discover other lexicalisations of the same objects in the ontology, possibly identifying new concepts or relations. New instances are added to the existing ontology or used to tune it. This process is repeated until a satisfactory ontology is obtained. The methodology largely automates the ontology construction process and the output is an ontology with an associated trained leaner to be used for further ontology modifications.
Resumo:
With this paper, we propose a set of techniques to largely automate the process of KA, by using technologies based on Information Extraction (IE) , Information Retrieval and Natural Language Processing. We aim to reduce all the impeding factors mention above and thereby contribute to the wider utility of the knowledge management tools. In particular we intend to reduce the introspection of knowledge engineers or the extended elicitations of knowledge from experts by extensive textual analysis using a variety of methods and tools, as texts are largely available and in them - we believe - lies most of an organization's memory.
Resumo:
The fundamental failure of current approaches to ontology learning is to view it as single pipeline with one or more specific inputs and a single static output. In this paper, we present a novel approach to ontology learning which takes an iterative view of knowledge acquisition for ontologies. Our approach is founded on three open-ended resources: a set of texts, a set of learning patterns and a set of ontological triples, and the system seeks to maintain these in equilibrium. As events occur which disturb this equilibrium, actions are triggered to re-establish a balance between the resources. We present a gold standard based evaluation of the final output of the system, the intermediate output showing the iterative process and a comparison of performance using different seed input. The results are comparable to existing performance in the literature.
Resumo:
The use of ontologies as representations of knowledge is widespread but their construction, until recently, has been entirely manual. We argue in this paper for the use of text corpora and automated natural language processing methods for the construction of ontologies. We delineate the challenges and present criteria for the selection of appropriate methods. We distinguish three ma jor steps in ontology building: associating terms, constructing hierarchies and labelling relations. A number of methods are presented for these purposes but we conclude that the issue of data-sparsity still is a ma jor challenge. We argue for the use of resources external tot he domain specific corpus.
Resumo:
Yorick Wilks is a central figure in the fields of Natural Language Processing and Artificial Intelligence. His influence extends to many areas and includes contributions to Machines Translation, word sense disambiguation, dialogue modeling and Information Extraction. This book celebrates the work of Yorick Wilks in the form of a selection of his papers which are intended to reflect the range and depth of his work. The volume accompanies a Festschrift which celebrates his contribution to the fields of Computational Linguistics and Artificial Intelligence. The papers include early work carried out at Cambridge University, descriptions of groundbreaking work on Machine Translation and Preference Semantics as well as more recent works on belief modeling and computational semantics. The selected papers reflect Yorick’s contribution to both practical and theoretical aspects of automatic language processing.
Resumo:
Corpora—large collections of written and/or spoken text stored and accessed electronically—provide the means of investigating language that is of growing importance academically and professionally. Corpora are now routinely used in the following fields: •the production of dictionaries and other reference materials; •the development of aids to translation; •language teaching materials; •the investigation of ideologies and cultural assumptions; •natural language processing; and •the investigation of all aspects of linguistic behaviour, including vocabulary, grammar and pragmatics.
Resumo:
Frith has argued that people with autism show “weak central coherence,” an unusual bias toward piecemeal rather than configurational processing and a reduction in the normal tendency to process information in context. However, the precise cognitive and neurological mechanisms underlying weak central coherence are still unknown. We propose the hypothesis that the features of autism associated with weak central coherence result from a reduction in the integration of specialized local neural networks in the brain caused by a deficit in temporal binding. The visuoperceptual anomalies associated with weak central coherence may be attributed to a reduction in synchronization of high-frequency gamma activity between local networks processing local features. The failure to utilize context in language processing in autism can be explained in similar terms. Temporal binding deficits could also contribute to executive dysfunction in autism and to some of the deficits in socialization and communication.
Resumo:
Although reading ability has been related to the processing of simple pitch features such as isolated transitions or continuous modulation spoken language also contains complex patterns of pitch changes that are important for establishing stress location and for segmenting the speech stream. These aspects of spoken language processing depend critically on pitch pattern (global structure) rather than on absolute pitch values (local structure). Here we show that the detection of global structure, and not local structure, is predictive of performance on measures of phonological skill and reading ability, which supports a critical importance of pitch contour processing in the acquisition of literacy.
Resumo:
Over recent years, evidence has been accumulating in favour of the importance of long-term information as a variable which can affect the success of short-term recall. Lexicality, word frequency, imagery and meaning have all been shown to augment short term recall performance. Two competing theories as to the causes of this long-term memory influence are outlined and tested in this thesis. The first approach is the order-encoding account, which ascribes the effect to the usage of resources at encoding, hypothesising that word lists which require less effort to process will benefit from increased levels of order encoding, in turn enhancing recall success. The alternative view, trace redintegration theory, suggests that order is automatically encoded phonologically, and that long-term information can only influence the interpretation of the resultant memory trace. The free recall experiments reported here attempted to determine the importance of order encoding as a facilitatory framework and to determine the locus of the effects of long-term information in free recall. Experiments 1 and 2 examined the effects of word frequency and semantic categorisation over a filled delay, and experiments 3 and 4 did the same for immediate recall. Free recall was improved by both long-term factors tested. Order information was not used over a short filled delay, but was evident in immediate recall. Furthermore, it was found that both long-term factors increased the amount of order information retained. Experiment 5 induced an order encoding effect over a filled delay, leaving a picture of short-term processes which are closely associated with long-term processes, and which fit conceptions of short-term memory being part of language processes rather better than either the encoding or the retrieval-based models. Experiments 6 and 7 aimed to determine to what extent phonological processes were responsible for the pattern of results observed. Articulatory suppression affected the encoding of order information where speech rate had no direct influence, suggesting that it is ease of lexical access which is the most important factor in the influence of long-term memory on immediate recall tasks. The evidence presented in this thesis does not offer complete support for either the retrieval-based account or the order encoding account of long-term influence. Instead, the evidence sits best with models that are based upon language-processing. The path urged for future research is to find ways in which this diffuse model can be better specified, and which can take account of the versatility of the human brain.