11 resultados para LUMBAR FACET JOINTS

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-variate descriptive model of environmental and nature conservation attitudes and values is proposed and empirically supported. A mapping sentence is developed out of analysis of data from a series of Repertory Grid interviews addressing conservation employees' attitudes towards their profession's activities. The research is carried out within the meta-theoretical framework of Facet Theory. A mapping sentence is developed consisting of 9 facets. From the mapping sentence 3 questionnaires were constructed viewing the selective orientations towards environmental concern. A mapping sentence and facet model is developed for each study. Once the internal structure of this model had been established using Similarity Structure Analysis, the elements of the facets are subjected to Partial Order Scalogram Analysis with base coordinates. A questionnaire was statistically analysed to assess the relationship between facet elements and 4 measures of attitudes towards, and involvement with, conservation. This enabled the comparison of the relative strengths of attitudes associated with each facet element and each measure of conservation attitude. In general, the relationship between the social value of conservation and involvement pledges to conservation were monotonic; perceived importance of a conservation issue appearing predictive of personal involvement. Furthermore, the elements of the life area and scale facets were differentially related to attitude measures. The multi-variate descriptive model of environmental conservation values and attitudes is discussed in relation to its implications for psychological research into environmental concern and for environmental and nature conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this thesis is concerned with the dynamic behaviour of structural joints which are both loaded, and excited, normal to the joint interface. Since the forces on joints are transmitted through their interface, the surface texture of joints was carefully examined. A computerised surface measuring system was developed and computer programs were written. Surface flatness was functionally defined, measured and quantised into a form suitable for the theoretical calculation of the joint stiffness. Dynamic stiffness and damping were measured at various preloads for a range of joints with different surface textures. Dry clean and lubricated joints were tested and the results indicated an increase in damping for the lubricated joints of between 30 to 100 times. A theoretical model for the computation of the stiffness of dry clean joints was built. The model is based on the theory that the elastic recovery of joints is due to the recovery of the material behind the loaded asperities. It takes into account, in a quantitative manner, the flatness deviations present on the surfaces of the joint. The theoretical results were found to be in good agreement with those measured experimentally. It was also found that theoretical assessment of the joint stiffness could be carried out using a different model based on the recovery of loaded asperities into a spherical form. Stepwise procedures are given in order to design a joint having a particular stiffness. A theoretical model for the loss factor of dry clean joints was built. The theoretical results are in reasonable agreement with those experimentally measured. The theoretical models for the stiffness and loss factor were employed to evaluate the second natural frequency of the test rig. The results are in good agreement with the experimentally measured natural frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is concerned with the experimental and theoretical investigation into the compression bond of column longitudinal reinforcement in the transference of axial load from a reinforced concrete column to a base. Experimental work includes twelve tests with square twisted bars and twenty four tests with ribbed bars. The effects of bar size, anchorage length in the base, plan area of the base, provision of bae tensile reinforcement, links around the column bars in the base, plan area of column and concrete compressive strength were investigated in the tests. The tests indicated that the strength of the compression anchorage of deformed reinforcing steel in the concrete was primarily dependent on the concrete strength and the resistance to bursting, which may be available within the anchorage . It was shown in the tests without concreted columns that due to a large containment over the bars in the foundation, failure occurred due to the breakdown of bond followed by the slip of the column bars along the anchorage length. The experimental work showed that the bar size , the stress in the bar, the anchorage length, provision of the transverse steel and the concrete compressive strength significantly affect the bond stress at failure. The ultimate bond stress decreases as the anchorage length is increased, while the ultimate bond stress increases with increasing each of the remainder parameters. Tests with concreted columns also indicated that a section of the column contributed to the bond length in the foundation by acting as an extra anchorage length. The theoretical work is based on the Mindlin equation( 3), an analytical method used in conjunction with finite difference calculus. The theory is used to plot the distribution of bond stress in the elastic and the elastic-plastic stage of behaviour. The theory is also used to plot the load-vertical displacement relationship of the column bars in the anchorage length, and also to determine the theoretical failure load of foundation. The theoretical solutions are in good agreement with the experimental results and the distribution of bond stress is shown to be significantly influenced by the bar stiffness factor K. A comparison of the experimental results with the current codes shows that the bond stresses currently used are low and in particular, CPIlO(56) specifies very conservative design bond stresses .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anaerobic skin commensal Propionibacterium acnes is an underestimated cause of human infections and clinical conditions. Previous studies have suggested a role for the bacterium in lumbar disc herniation and infection. To further investigate this, five biopsy samples were surgically excised from each of 64 patients with lumbar disc herniation. P. acnes and other bacteria were detected by anaerobic culture, followed by biochemical and PCR-based identification. In total, 24/64 (38%) patients had evidence of P. acnes in their excised herniated disc tissue. Using recA and mAb typing methods, 52% of the isolates were type II (50% of culture-positive patients), while type IA strains accounted for 28% of isolates (42% patients). Type III (11% isolates; 21% patients) and type IB strains (9% isolates; 17% patients) were detected less frequently. The MIC values for all isolates were lowest for amoxicillin, ciprofloxacin, erythromycin, rifampicin, tetracycline, and vancomycin (≤1mg/L). The MIC for fusidic acid was 1-2 mg/L. The MIC for trimethoprim and gentamicin was 2 to ≥4 mg/L. The demonstration that type II and III strains, which are not frequently recovered from skin, predominated within our isolate collection (63%) suggests that the role of P. acnes in lumbar disc herniation should not be readily dismissed. © 2013 Jess Rollason et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bonded joint specimens were fabricated from composite adherends and either an epoxy or a urethane adhesive. In mixed-mode fracture experiments, the epoxy bonded specimens generally failed by subinterfacial fracture in the composite, while specimens bonded with urethane failed very close to the adhesive/substrate interface. For the epoxy bonded specimens, fracture toughness did not change significantly with mode-mix, but for urethane bonded joints, fracture toughness increased with increasing shear load. Finite element analysis, which modeled specimens bonded with the two adhesives, showed similar trends. The different toughening behaviors for the two bonded joints can be attributed to dissipation of energy through inelastic deformation, which was insignificant in the epoxy-bonded joints but substantial when the urethane was used as the bonding agent.