2 resultados para LPL

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity is an established risk factor for type 2 diabetes. Activation of the adiponectin receptors has a clear role in improving insulin resistance although conflicting evidence exists for its effects on pancreatic beta-cells. Previous reports have identified both adiponectin receptors (ADR-1 and ADR-2) in the beta-cell. Recent evidence has suggested that two distinct regions of the adiponectin molecule, the globular domain and a small N-terminal region, have agonist properties. This study investigates the effects of two agonist regions of adiponectin on insulin secretion, gene expression, cell viability and cell signalling in the rat beta-cell line BRIN-BD11, as well as investigating the expression levels of adiponectin receptors (ADRs) in these cells. Cells were treated with globular adiponectin and adiponectin (15-36) +/-leptin to investigate cell viability, expression of key beta-cell genes and ERK1/2 activation. Both globular adiponectin and adiponectin (15-36) caused significant ERK1/2 dependent increases in cell viability. Leptin co-incubation attenuated adiponectin (15-36) but not globular adiponectin induced cell viability. Globular adiponectin, but not adiponectin (15-36), caused a significant 450% increase in PDX-1 expression and a 45% decrease in LPL expression. ADR-1 was expressed at a higher level than ADR-2, and ADR mRNA levels were differentially regulated by non-esterified fatty acids and peroxisome-proliferator-activated receptor agonists. These data provide evidence of roles for two distinct adiponectin agonist domains in the beta-cell and confirm the potentially important role of adiponectin receptor agonism in maintaining beta-cell mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Causative factors: Nutritional supplementation or pharmacological manipulation of appetite are unable to control the muscle atrophy seen in cancer cachexia. This suggests that tumour and/or host factors might be responsible for the depression in protein synthesis and the increase in protein degradation. An increased expression of the ubiquitin-proteasome proteolytic pathway is responsible for the increased degradation of myofibrillar proteins in skeletal muscle, and this may be due to tumour factors, such as proteolysis-inducing factor (PIF), or host factors such as tumour necrosis factor-α (TNF-α). In humans loss of adipose tissue is due to an increase in lipolysis rather than a decrease in synthesis, and this may be due to tumour factors such as lipid-mobilising factor (LMF) or TNF-α, both of which can increase cyclic AMP in adipocytes, leading to activation of hormone-sensitive lipase (HSL). Levels of mRNA for HSL are elevated twofold in adipose tissue of cancer patients, while there are no changes in lipoprotein lipase (LPL), involved in extraction of fatty acids from plasma lipoproteins for storage. Treatment for cachexia: This has concentrated on increasing food intake, although that alone is unable to reverse the metabolic changes. Agents interfering with TNF-α have not been very successful to date, although more research is required in that area. The only agent tested clinically that is able to interfere with the action of PIF is eicosapentaenoic acid (EPA). EPA attenuates protein degradation in skeletal muscle by preventing the increased expression of the ubiquitin-proteasome pathway, but has no effect on protein synthesis. When used alone EPA prevents further wasting in cachectic patients, and, when it is combined with an energy- and protein-dense nutritional supplement, weight gain is seen, which is totally lean body mass. These results suggest that mechanistic studies into the causes of cancer cachexia will allow appropriate therapeutic intervention.