23 resultados para LOW COST AIRLINES
em Aston University Research Archive
Resumo:
Recently, the service industry has seen a low-cost sector emerge alongside the traditional full-service sector. We explored whether these business models have different implications for employee cooperation, one factor that plays an important role in organizational functioning. Drawing on the social identity perspective, we argue that employees will identify less strongly with the lower-status, low-cost organizations, reducing their intrinsic motivation for such cooperation. We tested these relationships among employees in Thailand's airline industry. In line with expectations, flight attendants working for low-cost airlines (N = 77) perceived their organizations to have lower status than those working for the full-service airlines (N = 77), and this was associated with reduced organizational identification. This in turn predicted lower levels of organizational citizenship behaviour and a stronger desire for organizational exit. © 2010 Hogrefe Publishing.
Resumo:
We report the realization of low-cost in-fiber WDM device function utilizing efficient side-detection of strong radiation mode out-coupling from tilted FBGs. The spatial-to-spectral conversion efficiency as high as 0.32 mm/nm is demonstrated.
Resumo:
Through the application of novel signal processing techniques we are able to measure physical measurands with both high accuracy and low noise susceptibility. The first interrogation scheme is based upon a CCD spectrometer. We compare different algorithms for resolving the Bragg wavelength from a low resolution discrete representation of the reflected spectrum, and present optimal processing methods for providing a high integrity measurement from the reflection image. Our second sensing scheme uses a novel network of sensors to measure the distributive strain response of a mechanical system. Using neural network processing methods we demonstrate the measurement capabilities of a scalable low-cost fibre Bragg grating sensor network. This network has been shown to be comparable with the performance of existing fibre Bragg grating sensing techniques, at a greatly reduced implementation cost.
Resumo:
This research develops a low cost remote sensing system for use in agricultural applications. The important features of the system are that it monitors the near infrared and it incorporates position and attitude measuring equipment allowing for geo-rectified images to be produced without the use of ground control points. The equipment is designed to be hand held and hence requires no structural modification to the aircraft. The portable remote sensing system consists of an inertia measurement unit (IMU), which is accelerometer based, a low-cost GPS device and a small format false colour composite digital camera. The total cost of producing such a system is below GBP 3000, which is far cheaper than equivalent existing systems. The design of the portable remote sensing device has eliminated bore sight misalignment errors from the direct geo-referencing process. A new processing technique has been introduced for the data obtained from these low-cost devices, and it is found that using this technique the image can be matched (overlaid) onto Ordnance Survey Master Maps at an accuracy compatible with precision agriculture requirements. The direct geo-referencing has also been improved by introducing an algorithm capable of correcting oblique images directly. This algorithm alters the pixels value, hence it is advised that image analysis is performed before image georectification. The drawback of this research is that the low-cost GPS device experienced bad checksum errors, which resulted in missing data. The Wide Area Augmented System (WAAS) correction could not be employed because the satellites could not be locked onto whilst flying. The best GPS data were obtained from the Garmin eTrex (15 m kinematic and 2 m static) instruments which have a highsensitivity receiver with good lock on capability. The limitation of this GPS device is the inability to effectively receive the P-Code wavelength, which is needed to gain the best accuracy when undertaking differential GPS processing. Pairing the carrier phase L1 with the pseudorange C/A-Code received, in order to determine the image coordinates by the differential technique, is still under investigation. To improve the position accuracy, it is recommended that a GPS base station should be established near the survey area, instead of using a permanent GPS base station established by the Ordnance Survey.
Resumo:
In this paper, we report a simple fibre laser torsion sensor system using an intracavity tilted fibre grating as a torsion encoded loss filter. When the grating is subjected to twist, it induces loss to the cavity, thus affecting the laser oscillation build-up time. By measuring the build-up time, both twist direction and angle on the grating can be monitored. Using a low-cost photodiode and a two-channel digital oscilloscope, we have characterised the torsion sensing capability of this fibre laser system and obtained a torsion sensitivity of ~412µs/(rad/m) in the dynamic range from -150° to +150°.
Resumo:
Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach.
Resumo:
A low-cost fiber optic sensor system based on multimode fiber and an LED light source is presented. A multimode fiber Bragg grating (MMFBG) element is used as a strain sensor. In a matched grating scheme, a MMFBG similar to the sensing one was used as a reference in the receiving unit. For detection of large wavelength shift we demonstrated the feasibility of MMFBG wavelength detection using a single mode fiber fused coupler edge filter. The high cost normally associated with wavelength interrogators for single mode fiber FBG sensors was overcome by the utilization of a low cost multimode fiber pigtailed LED light source. The multimode fiber sensing system has the potential of maintaining much of the advantages of its single mode FBG sensor system counterparts. The MMFBG sensing schemes could be used for short distance, high sensitivity, high speed, strain, temperature and acoustic sensing applications.
Resumo:
We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 µm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We describe a low cost approach to interrogating a distributive tactile surface instrumented with fibre Bragg grating sensors. The system can determine the position, shape, and orientation of an object on the surface.
Resumo:
We present a compact, portable and low cost generic interrogation strain sensor system using a fibre Bragg grating configured in transmission mode with a vertical-cavity surface-emitting laser (VCSEL) light source and a GaAs photodetector embedded in a polymer skin. The photocurrent value is read and stored by a microcontroller. In addition, the photocurrent data is sent via Bluetooth to a computer or tablet device that can present the live data in a real time graph. With a matched grating and VCSEL, the system is able to automatically scan and lock the VCSEL to the most sensitive edge of the grating. Commercially available VCSEL and photodetector chips are thinned down to 20 µm and integrated in an ultra-thin flexible optical foil using several thin film deposition steps. A dedicated micro mirror plug is fabricated to couple the driving optoelectronics to the fibre sensors. The resulting optoelectronic package can be embedded in a thin, planar sensing sheet and the host material for this sheet is a flexible and stretchable polymer. The result is a fully embedded fibre sensing system - a photonic skin. Further investigations are currently being carried out to determine the stability and robustness of the embedded optoelectronic components. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
In this paper, we report a simple fibre laser torsion sensor system using an intracavity tilted fibre grating as a torsion encoded loss filter. When the grating is subjected to twist, it induces loss to the cavity, thus affecting the laser oscillation build-up time. By measuring the build-up time, both twist direction and angle on the grating can be monitored. Using a low-cost photodiode and a two-channel digital oscilloscope, we have characterised the torsion sensing capability of this fibre laser system and obtained a torsion sensitivity of ~412µs/(rad/m) in the dynamic range from -150° to +150°.
Resumo:
A low-cost fiber optic sensor system based on multimode fiber and an LED light source is presented. A multimode fiber Bragg grating (MMFBG) element is used as a strain sensor. In a matched grating scheme, a MMFBG similar to the sensing one was used as a reference in the receiving unit. For detection of large wavelength shift we demonstrated the feasibility of MMFBG wavelength detection using a single mode fiber fused coupler edge filter. The high cost normally associated with wavelength interrogators for single mode fiber FBG sensors was overcome by the utilization of a low cost multimode fiber pigtailed LED light source. The multimode fiber sensing system has the potential of maintaining much of the advantages of its single mode FBG sensor system counterparts. The MMFBG sensing schemes could be used for short distance, high sensitivity, high speed, strain, temperature and acoustic sensing applications.
Resumo:
Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach.
Resumo:
Measurement assisted assembly (MAA) has the potential to facilitate a step change in assembly efficiency for large structures such as airframes through the reduction of rework, manually intensive processes and expensive monolithic assembly tooling. It is shown how MAA can enable rapid part-to-part assembly, increased use of flexible automation, traceable quality assurance and control, reduced structure weight and improved aerodynamic tolerances. These advances will require the development of automated networks of measurement instruments; model based thermal compensation, the automatic integration of 'live' measurement data into variation simulation and algorithms to generate cutting paths for predictive shimming and drilling processes. This paper sets out an architecture for digital systems which will enable this integrated approach to variation management. © 2013 The Authors.
Resumo:
A quantitative comparison of up to 40 Gb/s low-cost orthogonal frequency-division multiplexing access (OFDMA)-passive optical networks (PON) implementations for both upstream (US) and downstream (DS) directions is evaluated based on different modulation and detection techniques. © 2012 IEEE.