8 resultados para LIVING CELLS
em Aston University Research Archive
Resumo:
Cell-based therapies have the potential to contribute to global healthcare, whereby the use of living cells and tissues can be used as medicinal therapies. Despite this potential, many challenges remain before the full value of this emerging field can be realized. The characterization of input material for cell-based therapy bioprocesses from multiple donors is necessary to identify and understand the potential implications of input variation on process development. In this work, we have characterized bone marrow derived human mesenchymal stem cells (BM-hMSCs) from multiple donors and discussed the implications of the measurable input variation on the development of autologous and allogeneic cell-based therapy manufacturing processes. The range of cumulative population doublings across the five BM-hMSC lines over 30 days of culture was 5.93, with an 18.2% range in colony forming efficiency at the end of the culture process and a 55.1% difference in the production of interleukin-6 between these cell lines. It has been demonstrated that this variation results in a range in the process time between these donor hMSC lines for a hypothetical product of over 13 days, creating potential batch timing issues when manufacturing products from multiple patients. All BM-hMSC donor lines demonstrated conformity to the ISCT criteria but showed a difference in cell morphology. Metabolite analysis showed that hMSCs from the different donors have a range in glucose consumption of 26.98 pmol cell−1 day−1, Lactate production of 29.45 pmol cell−1 day−1 and ammonium production of 1.35 pmol cell−1 day−1, demonstrating the extent of donor variability throughout the expansion process. Measuring informative product attributes during process development will facilitate progress towards consistent manufacturing processes, a critical step in the translation cell-based therapies.
Resumo:
S100 proteins promote cancer cell migration and metastasis. To investigate their roles in the process of migration we have constructed inducible systems for S100P in rat mammary and human HeLa cells that show a linear relationship between its intracellular levels and cell migration. S100P, like S100A4, differentially interacts with the isoforms of nonmuscle myosin II (NMIIA, K(d) = 0.5 µm; IIB, K(d) = 8 µm; IIC, K(d) = 1.0 µm). Accordingly, S100P dissociates NMIIA and IIC filaments but not IIB in vitro. NMIIA knockdown increases migration in non-induced cells and there is no further increase upon induction of S100P, whereas NMIIB knockdown reduces cell migration whether or not S100P is induced. NMIIC knockdown does not affect S100P-enhanced cell migration. Further study shows that NMIIA physically interacts with S100P in living cells. In the cytoplasm, S100P occurs in discrete nodules along NMIIA-containing filaments. Induction of S100P causes more peripheral distribution of NMIIA filaments. This change is paralleled by a significant drop in vinculin-containing, actin-terminating focal adhesion sites (FAS) per cell. The induction of S100P, consequently, causes significant reduction in cellular adhesion. Addition of a focal adhesion kinase (FAK) inhibitor reduces disassembly of FAS and thereby suppresses S100P-enhanced cell migration. In conclusion, this work has demonstrated a mechanism whereby the S100P-induced dissociation of NMIIA filaments leads to a weakening of FAS, reduced cell adhesion, and enhanced cell migration, the first major step in the metastatic cascade.
Resumo:
The transamidating activity of tissue transglutaminase is regulated by the ligands calcium and GTP, via conformational changes which facilitate or interfere with interaction with the peptidyl-glutamine substrate. We have analysed binding of these ligands by calorimetric and computational approaches. In the case of GTP we have detected a single high affinity site (K (D) approximately 1 muM), with moderate thermal effects suggestive that binding GTP involves replacement of GDP, normally bound to the protein. On line with this possibility no significant binding was observed during titration with GDP and computational studies support this view. Titration with calcium at a high cation molar excess yielded a complex binding isotherm with a number of "apparent binding sites" in large excess over those detectable by equilibrium dialysis (6 sites). This binding pattern is ascribed to occurrence of additional thermal contributions, beyond those of binding, due to the occurrence of conformational changes and to catalysis itself (with protein self-crosslinking). In contrast only one site for binding calcium with high affinity (K (D) approximately 0.15 muM) is observed with samples of enzyme inactivated by alkylation at the active site (to prevent enzyme crosslinkage and thermal effects of catalysis). These results indicate an intrinsic ability of tissue transglutaminase to bind calcium with high affinity and the necessity of careful reassessment of the enzyme regulatory pattern in relation to the concentrations of ligands in living cells, taking also in account effects of ligands on protein subcellular compartimentation.
Resumo:
Over 50% of clinically-marketed drugs target membrane proteins; in particular G protein-coupled receptors (GPCRs). GPCRs are vital to living cells, performing an active role in many processes, making them integral to drug development. In nature, GPCRs are not sufficiently abundant for research and their structural integrity is often lost during extraction from cell membranes. The objectives of this thesis were to increase recombinant yield of the GPCR, human adenosine A2A receptor (hA2AR) by investigating bioprocess conditions in large-scale Pichia pastoris and small-scale Saccharomyces cerevisiae cultivations. Extraction of hA2AR from membranes using novel polymers was also investigated. An increased yield of hA2AR from P. pastoris was achieved by investigating the methanol feeding regime. Slow, exponential feed during induction (μlow) was compared to a faster, exponential feed (μhigh) in 35 L pilot-scale bioreactors. Overall hA2AR yields were increased for the μlow cultivation (536.4pmol g-1) compared to the μhigh148.1 pmol g-1. hA2AR levels were maintained in cytotoxic methanol conditions and unexpectedly, pre-induction levels of hA2AR were detected. Small-scale bioreactor work showed that Design of Experiments (DoE) could be applied to screen for bioprocess conditions to give optimal hA2AR yields. Optimal conditions were retrieved for S. cerevisiae using a d-optimal screen and response surface methodology. The conditions were 22°C, pH 6.0, 30% DO without dimethyl sulphoxide. A polynomial equation was generated to predict hA2AR yields if conditions varied. Regarding the extraction, poly (maleic anhydride-styrene) or PMAS was successful in solubilising hA2AR from P. pastoris membranes compared with dodcecyl-β-D-maltoside (DDM) detergent. Variants of PMAS worked well as solubilising agents with either 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or cholesteryl hemisuccinate (CHS). Moreover, esterification of PMAS improved solubilisation, suggesting that increased hydrophobicity stabilises hA2AR during extraction. Overall, hA2AR yields were improved in both, P. pastoris and S. cerevisiae and the use of novel polymers for efficient extraction was achieved.
Resumo:
In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations.
Resumo:
Optical manipulation of microscopic objects (including living cells) using Bessel beams from semiconductor lasers has been demonstrated for the first time. In addition, it has been found in the experiments that a Bessel beam of sufficient power from a semiconductor laser makes it possible to manipulate simultaneously several microscopic objects captured into its central lobe and the first ring. © 2014 Pleiades Publishing, Ltd.
Resumo:
In this paper, we demonstrate, for the first time to the best of our knowledge, utilization of Bessel beams generated from a semiconductor laser for optical trapping and manipulation of microscopic particles including living cells. © 2014 OSA.
Resumo:
This thesis describes investigations upon pseudopeptides which were conducted to improve our understanding of the fate of synthetic macromolecules in cells and to develop approaches to influence that fate. The low uptake of molecules across the external cellular membrane is the principal barrier against effective delivery of therapeutic products to within the cell structure. In nature, disruption of this membrane by amphiphilic peptides plays a central role in the pathogenesis by bacterial and toxin infections. These amphiphilic peptides contain both hydrophobic and weakly charged hydrophilic amino acid residues and upon activation they become integrated into the lipid bilayers of the extracellular or endosomal membranes. The architectures of the pseudopeptides described here were designed to display similar pH dependent membrane rupturing activity to that of peptides derived from the influenza virus hemagglutinin HA-2. This HA protein promotes fusion of the influenza virus envelope with the cell endosome membrane due to a change in conformation in response to the acidic pH of the endosome lumen (pH 5.0-6.0). The pseudopeptides were obtained by the copolymerisation of L-lysine and L-lysine ethyl-ester with various dicarboxylic acid moieties. In this way a linear polyamide comprising of alternating pendant carboxylic acids and pendant hydrophobic moieties was made. At physiological pH (pH 7.4), electrostatic repulsion of pendant anionic carboxyl groups along the polymer backbone is sufficient to overcome the intramolecular association of the hydrophobic groups resulting in an extended conformation. At low pH (typically pH 4.8) loss of charge results in increased intramolecular hydrophobic association and the polymer chain collapses to a compact conformation, leading to precipitation of the polymer. Consequently, a conformation dependent functional property could be made to respond to small changes in the environmental pH. Pseudopepides were investigated for their cytoxicity towards a well known cell line, namely C26 (colorectal adenocarcinoma) and were shown through the use of a cell viability assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) to be well tolerated by C26 cells over a range of concentrations (2-500,μg/ml) at physiological pH (pH 7.4). A modified version of a shorter 30-minute coupled enzymatic assay, the LDH (lactate dehydrogenase) assay was used to evaluate the ability of the pseudopeptides to disrupt the membrane of two different cell lines (COS-1; African green monkey, kidney and A2780; human ovarian carcinoma) at low pH (pH 5.5). The cell membrane disruption property of the pseudopeptides was successfully demonstrated for COS-I and A2780 cell lines at this pH (pH 5.5). A variety of cell lines were chosen owing to limited availability and to compare the cytotoxic action of these pH responsive psudopeptides towards normal and tumorogenic cell lines. To investigate the intracellular delivery of one of the pseudopeptides, poly (L-lysine iso-phthalamide) and its subcellular location, a Cy3 bisamine fluorophore was conjugated into its backbone, at ratios of dye:lysine of 1:20, 1:30, 1:40, 1:60 and 1:80. Native polyacrylacrylamide gel electrophoresis (PAGE) and high voltage paper electrophoresis (HVPE) studies of the polydyes were conducted and provided evidence that that the Cy3 bisamine fluorophore was conjugated into the backbone of the polymer, poly (L-lysine iso-phthalamide). The subcellular fate of the fluorescentlylabelled "polydye" (hereafter PD20) was monitored by laser scanning confocal microscopy (LSCM) in CHO (Chinese hamster ovary) cells cultured in-vitro at various pH values (pH 7.4 and 5.0). LSCM images depicting time-dependent internalisation of PD20 indicated that PD20 traversed the extracellular membrane of CHO cells cultured in-vitro within ten minutes and migrated towards the endosomal regions where the pH is in the region of 5.0 to 6.0. Nuclear localisation of PD20 was demonstrated in a subpopulation of CHO cells. A further study was completed in CHO and HepG2 (hepatocellular carcinoma) cells cultured in-vitro using a lower molecular weight polymer to demonstrate that the molecular weight of "polydye" could be tailored to attain nuclear trafficking in cells. Prospective use of this technology encompasses a method of delivering a payload into a living cell based upon the hypercoiling nature of the pseudopeptides studied in this thesis and has led to a patent application (GB0228525.2; 20(2).