7 resultados para LIQUID-CRYSTALLINE PARTICLES

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dielectric relaxation behaviour of a series of cyclic and linear poly(dimethylsiloxanes) with overline nn in the range 28 to 99 has been studied, as a function of temperature (142.0K-157.5K) and frequency (12-105Hz). Activation energies for the -relaxation process, Davidson-Cole empirical distribution factors, , and mean-square dipole moments per repeat unit, < 2> , have been calculated. Differences in values of H_act reflected restricted dipolar rotation for the cyclic structures, compared to the linear structures, over the range of molecular weights studied. The dielectric relaxation behaviour of a series of linear oligomers of methyl phenyl siloxane, with n in the range 4 to 10, a series of linear fractions of poly(methyl phenyl siloxane), with overline n_n in the range 31 to 1370, and a cyclic oligomer of mehyl phenyl siloxane, with n = 10, has been studied as a function of temperature (155.5K-264.0K) and frequency (12-105Hz). Activation energies for the -relaxation process, Davidson-Cole and Cole-Cole empirical distribution factors, and , respectively, and mean-square dipole moments per repeat unit have been calculated. The reduced flexibility of short methyl phenyl siloxane chains, compared to dimethyl siloxane chains, was apparent from a comparison of dipole moment ratios. The dilectric relaxation behaviour of poly(methyl hydrogen siloxane) and poly(n-hexyl methyl siloxane) has been studied as a function of temperature and frequency. A polysiloxane liquid crystal has been synthesised and its dielectric relaxation behaviour has been studied, as a function of temperature and frequency, in the liquid crystalline phase and below T_g. Poly(p-phenylene vinylene) and related oligomers have been synthesised and characterised by a variety of experimental techniques. The Kerr effect of two oligomeric fractions, in solution in PPG 2025, has been measured. The electrical conductivities of the undoped and I_2-doped polymer and oligomers have been measured.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hierarchical macroporous-mesoporous SBA-15 silicas have been synthesised via dual-templating routes employing liquid crystalline surfactants and polystyrene beads. These offer high surface areas and well-defined, interconnecting macro- and mesopore networks with respective narrow size distributions around 300 nm and 3-5 nm for polystyrene:tetraethoxysilane ratios ≥2:1. Subsequent functionalisation with propylsulfonic acid yields the first organized, macro-mesoporous solid acid catalyst. The enhanced mass transport properties of these new bi-modal solid acid architectures confer significant rate enhancements in the transesterification of bulky glyceryl trioctanoate, and esterification of long chain palmitic acid, over pure mesoporous analogues. This paves the way to the wider application of hierarchical catalysts in biofuel synthesis and biomass conversion. © 2010 The Royal Society of Chemistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Samples of Various industrial or pilot plant spray-dried materials were obtained from manufacturers together with details of drying conditions and feed concentrations. The samples were subjected to qualitative and semi-quantitative examination to identify structural and morphological features. The results were related to measured bulk physical properties and to drying conditions. Single particles were produced in a convective drying process Analogous to spray drying, in which different solids or mixtures of solids were dried from solutions, slurries or pastes as single suspended droplets. The localized chemical and physical structures were analysed and in some cases the retention of volatiles monitored. The results were related to experimental conditions, viz.; air temperature, initial solids concentration and the degree of feed aeration. Three distinct categories of particle morphology were identified, i.e.; crystalline, skin-forming and agglomerate. Each category is evidence of a characteristic drying behaviour which is dependent on initial solids concentration. the degree of feed aeration, and drying temperature. Powder flow ability, particle and bulk density, particle-size, particle friability, and the retention of volatiles bear a direct relationship to morphological structure. Morphologies of multicomponent mixtures were complex, but the respective migration rates of the solutes were dependent on drying temperature. Gas-film heat and SDSS transfer coefficients of single pure liquid droplets were also measured over a temperature range of 50•C to 200•C under forced convection. Balanced transfer rates were obtained attributed to droplet instability or oscillation within the airflow, demonstrated in associated work with single free-flight droplets. The results are of relevance to drier optimisation and to the optimisation of product characteristics, e.g.; particle strength and essential volatiles-retention, in convective drying.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moisture migration caking of pharmaceutical excipients in the absence of load is a significant quality and stability issue. This study uses Atomic Force Microscopy (AFM) to examine a solid bridge formed between two 20µm spray-dried sodium carbonate particles. The bridge is grown by repeatedly exposing the system to 70% RH and 30% RH cycles at 25?C. A comparison is made with the idealised bridge model developed by Tanaka (1978) which was previously verified using crystalline systems. The resulting system was found to be more complex and grew in two stages. The first stage consisted of linear growth to 5 cycles, followed by a more gradual expansion and the appearance of crystalline structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative approach to the modelling of solid-liquid and gas-liquid-solid flows for a 5:1 height to width aspect ratio bubble column is presented here. A modified transport equation for the volume fraction of a dispersed phase has been developed for the investigation of turbulent buoyancy driven flows (Chem. Eng. Proc., in press). In this study, a modified transport equation has been employed for discrete phase motion considering both solid-liquid and gas-liquid-solid flows. The modelling of the three-phase flow in a bubble column was achieved in the following case: injecting a slug of solid particles into the column for 10 s at a velocity of 0.1 m s-1 and then the gas phase flow was initiated with a superficial gas velocity of 0.02 cm s-1. © 2003 Elsevier B.V. All rights reserved.