9 resultados para LINEAR FUNCTIONAL OBSERVERS

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aromatic and aliphatic diacid chlorides were used to condense naturally occurring diamino acids and their esterified derivatives. It was anticipated the resulting functional polyamides would biodegrade to physiologically acceptable compounds and show pH dependant solubility could be used for biomedical applications ranging from enteric coatings to hydrosoluble drug delivery vehicles capable of targeting areas of low physiological pH. With these applications in mind the polymers were characterised by infra red spectroscopy, gel permeation chromatography and in the case of aqueous soluble polymers by potentiometric titration. Thin films of poly (lysine ethyl ester isophthalamide) plasticised with poly (caprolactone) were cast from DMSO/chloroform solutions and their mechanical properties measured on a Hounsfield Hti tensiometer. Interfacial synthesis was investigated as a synthetic route for the production of linear functional polyamides. High molecular weight polymer was obtained only when esterified diamino acids were condensed with aromatic diacid chlorides. The method was unsuitable for the production of copolymers of free and esterified amino acids with a diacid chloride. A novel miscible mixed solvent single phase reaction was investigated for production of copolymers of esterified and non-esterified amino acids with diacid chlorides. Aliphatic diacid chlorides were unsuitable for condensing diamino acids using this technique because of high rates of hydrolysis. The technique gave high molecular weight homopolymers from esterified diamino acids and aromatic diacid chlorides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G-protein coupled receptors (GPCRs) typically have a functionally important C-terminus which, in the largest subfamily (family A), includes a membrane-parallel eighth helix. Mutations of this region are associated with several diseases. There are few C-terminal studies on the family B GPCRs and no data supporting the existence of a similar eighth helix in this second major subfamily, which has little or no sequence homology to family A GPCRs. Here we show that the C-terminus of a family B GPCR (CLR) has a disparate region from N400 to C436 required for CGRP-mediated internalization, and a proximal region of twelve residues (from G388 to W399), in a similar position to the family A eighth helix, required for receptor localization at the cell surface. A combination of circular and linear dichroism, fluorescence and modified waterLOGSY NMR spectroscopy (SALMON) demonstrated that a peptide mimetic of this domain readily forms a membrane-parallel helix anchored to the liposome by an interfacial tryptophan residue. The study reveals two key functions held within the C-terminus of a family B GPCR and presents support for an eighth helical region with striking topological similarity to the nonhomologous family A receptor. This helix structure appears to be found in most other family B GPCRs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study aimed to explore methods of assessing interactions between neuronal sources using MEG beamformers. However, beamformer methodology is based on the assumption of no linear long-term source interdependencies [VanVeen BD, vanDrongelen W, Yuchtman M, Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans Biomed Eng 1997;44:867-80; Robinson SE, Vrba J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Recent advances in Biomagnetism. Sendai: Tohoku University Press; 1999. p. 302-5]. Although such long-term correlations are not efficient and should not be anticipated in a healthy brain [Friston KJ. The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B Biol Sci 2000;355:215-36], transient correlations seem to underlie functional cortical coordination [Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 1999;49-65; Rodriguez E, George N, Lachaux J, Martinerie J, Renault B, Varela F. Perception's shadow: long-distance synchronization of human brain activity. Nature 1999;397:430-3; Bressler SL, Kelso J. Cortical coordination dynamics and cognition. Trends Cogn Sci 2001;5:26-36]. Methods: Two periodic sources were simulated and the effects of transient source correlation on the spatial and temporal performance of the MEG beamformer were examined. Subsequently, the interdependencies of the reconstructed sources were investigated using coherence and phase synchronization analysis based on Mutual Information. Finally, two interacting nonlinear systems served as neuronal sources and their phase interdependencies were studied under realistic measurement conditions. Results: Both the spatial and the temporal beamformer source reconstructions were accurate as long as the transient source correlation did not exceed 30-40 percent of the duration of beamformer analysis. In addition, the interdependencies of periodic sources were preserved by the beamformer and phase synchronization of interacting nonlinear sources could be detected. Conclusions: MEG beamformer methods in conjunction with analysis of source interdependencies could provide accurate spatial and temporal descriptions of interactions between linear and nonlinear neuronal sources. Significance: The proposed methods can be used for the study of interactions between neuronal sources. © 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atom transfer radical polymerisation (ATRP) of styrene in xylene solution initiated with 1-phenylethyl bromide and mediated by CuBr/N-propyl-2- pyridinemethanimine catalyst complex was studied. The polymerisation was ill-controlled, yielding polymers with broad molecular weight distributions and values of number average molecular weight considerably higher than the theoretical values calculated from 100% initiator efficiency. The degree of control afforded over the polymerisation was enhanced by use of a more soluble catalyst complex, CuBr/N-octyl-2-pyridinemethanimine. Furthermore, the use of a more polar solvent, diglyme, generated a homogeneous catalyst complex that facilitated the production of polymers having narrow molecular weight distributions (1.10 < PDi < 1.20). The kinetics of the atom transfer radical polymerisation of methyl methacrylate at 90°C in diglyme solution initiated with ethyl-2-bromoisobutyrate and mediated by CuBr/N-octyl-2-pyridinemethanimine was studied and the orders of the reaction were established. The effect on the rate of polymerisation of the ratio of CuBr:N-octyl-2-pyridinemethanimine was also determined. The temperature dependencies of the rate of polymerisation of methyl methacrylate in diglyme solution and xylene solution were studied, and were found to be non-linear and dependent upon the polarity of the solvent. The use of highly polar aprotic solvents, such as N,N-dimethylformamide and dimethylsulphoxide, was found to be detrimental to the degree of control afforded over the polymerisation of methyl methacrylate. This was circumvented by use of a 5-fold excess, over that conventionally used, of catalyst complex. The atom transfer radical polymerisation of (4-nitrophenyl)-[3-[N-[2- (methacryloyloxy)ethyl]carbazolyl]]diazene in dimethyl sulphoxide solution was studied. Although homopolymerisation yielded only oligomers, copolymerisation of this monomer with methyl methacrylate was found to be readily achievable. Keywords: ATRP, Styrene; Methyl methacrylate; Polar solvents; Fully-functional photorefractive polymer. 2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI) and behavioural experiments were used to investigate the neural processes underlying global form perception in human vision. Behavioural studies using Glass patterns examined sensitivity for detecting radial, rotational and horizontal structure. Neuroimaging experiments using either Glass patterns or arrays of Gabor patches determined the spatio-temporal neural responseto global form. MEG data were analysed using synthetic aperture magnetometry (SAM) to spatially map event-related cortical oscillatory power changes: the temporal sequencing of activity within a discrete cortical area was determined using a Morlet wavelet transform. A case study was conducted to determine the effects of strbismic amblyopia on global form processing: all other observers were normally-sighted. The main findings from normally-sighted observers were: 1) sensitivity to horizontal structure was less than for radial or rotational structure; 2) the neural response to global structure was a reduction in cortical oscillatory power (10-30 Hz) within a network of extrastriate areas, including V4 and V3a; 3) the extend of reduced cortical power was least for horizontal patters; 4) V1 was not identified as a region of peak activity with either MEG or fMRI. The main findings with the strabismic amblyope were: 1) sensitivity for detection of radial, rotational, and horizontal structure was reduced when viewed with the amblyopic- relative to the fellow- eye; 2) cortical power changes within V4 to the presentation of rotational Glass patterns were less when viewed with the amblyopic- compared with the fellow- eye. The main conclusions are: 1) a network of extrastriate cortical areas are involved in the analysis of global form, with the most prominent change in neural activity being a reduction in oscillatory power within the 10-30 Hz band; 2) in strabismic amblyopia, the neuronal assembly associated with form perception in extrastriate cortex may be dysfunctional, the nature of this dysfunction may be a change in the normal temporal pattern of neuronal discharges; 3) MEG, fMRI and behavioural measures support the notion that different neural processes underlie the perception of horizontal as opposed to radial or rotational structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroimaging studies of cortical activation during image transformation tasks have shown that mental rotation may rely on similar brain regions as those underlying visual perceptual mechanisms. The V5 complex, which is specialised for visual motion, is one region that has been implicated. We used functional magnetic resonance imaging (fMRI) to investigate rotational and linear transformation of stimuli. Areas of significant brain activation were identified for each of the primary mental transformation tasks in contrast to its own perceptual reference task which was cognitively matched in all respects except for the variable of interest. Analysis of group data for perception of rotational and linear motion showed activation in areas corresponding to V5 as defined in earlier studies. Both rotational and linear mental transformations activated Brodman Area (BA) 19 but did not activate V5. An area within the inferior temporal gyrus, representing an inferior satellite area of V5, was activated by both the rotational perception and rotational transformation tasks, but showed no activation in response to linear motion perception or transformation. The findings demonstrate the extent to which neural substrates for image transformation and perception overlap and are distinct as well as revealing functional specialisation within perception and transformation processing systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background - Amygdala-orbitofrontal cortical (OFC) functional connectivity (FC) to emotional stimuli and relationships with white matter remain little examined in bipolar disorder individuals (BD). Methods - Thirty-one BD (type I; n = 17 remitted; n = 14 depressed) and 24 age- and gender-ratio-matched healthy individuals (HC) viewed neutral, mild, and intense happy or sad emotional faces in two experiments. The FC was computed as linear and nonlinear dependence measures between amygdala and OFC time series. Effects of group, laterality, and emotion intensity upon amygdala-OFC FC and amygdala-OFC FC white matter fractional anisotropy (FA) relationships were examined. Results - The BD versus HC showed significantly greater right amygdala-OFC FC (p = .001) in the sad experiment and significantly reduced bilateral amygdala-OFC FC (p = .007) in the happy experiment. Depressed but not remitted female BD versus female HC showed significantly greater left amygdala-OFC FC (p = .001) to all faces in the sad experiment and reduced bilateral amygdala-OFC FC to intense happy faces (p = .01). There was a significant nonlinear relationship (p = .001) between left amygdala-OFC FC to sad faces and FA in HC. In BD, antidepressants were associated with significantly reduced left amygdala-OFC FC to mild sad faces (p = .001). Conclusions - In BD, abnormally elevated right amygdala-OFC FC to sad stimuli might represent a trait vulnerability for depression, whereas abnormally elevated left amygdala-OFC FC to sad stimuli and abnormally reduced amygdala-OFC FC to intense happy stimuli might represent a depression state marker. Abnormal FC measures might normalize with antidepressant medications in BD. Nonlinear amygdala-OFC FC–FA relationships in BD and HC require further study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Esophageal intubation is a widely utilized technique for a diverse array of physiological studies, activating a complex physiological response mediated, in part, by the autonomic nervous system (ANS). In order to determine the optimal time period after intubation when physiological observations should be recorded, it is important to know the duration of, and factors that influence, this ANS response, in both health and disease. Methods: Fifty healthy subjects (27 males, median age 31.9 years, range 20-53 years) and 20 patients with Rome III defined functional chest pain (nine male, median age of 38.7 years, range 28-59 years) had personality traits and anxiety measured. Subjects had heart rate (HR), blood pressure (BP), sympathetic (cardiac sympathetic index, CSI), and parasympathetic nervous system (cardiac vagal tone, CVT) parameters measured at baseline and in response to per nasum intubation with an esophageal catheter. CSI/CVT recovery was measured following esophageal intubation. Key Results: In all subjects, esophageal intubation caused an elevation in HR, BP, CSI, and skin conductance response (SCR; all p < 0.0001) but concomitant CVT and cardiac sensitivity to the baroreflex (CSB) withdrawal (all p < 0.04). Multiple linear regression analysis demonstrated that longer CVT recovery times were independently associated with higher neuroticism (p < 0.001). Patients had prolonged CSI and CVT recovery times in comparison to healthy subjects (112.5 s vs 46.5 s, p = 0.0001 and 549 s vs 223.5 s, p = 0.0001, respectively). Conclusions & Inferences: Esophageal intubation activates a flight/flight ANS response. Future studies should allow for at least 10 min of recovery time. Consideration should be given to psychological traits and disease status as these can influence recovery. The psychological trait of neuroticism retards autonomic recovery following esophageal intubation in health and functional chest pain. © 2013 John Wiley & Sons Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combination of signals from the two eyes is the gateway to stereo vision. To gain insight into binocular signal processing, we studied binocular summation for luminance-modulated gratings (L or LM) and contrast-modulated gratings (CM). We measured 2AFC detection thresholds for a signal grating (0.75 c/deg, 216msec) shown to one eye, both eyes, or both eyes out-of-phase. For LM and CM, the carrier noise was in both eyes, even when the signal was monocular. Mean binocular thresholds for luminance gratings (L) were 5.4dB better than monocular thresholds - close to perfect linear summation (6dB). For LM and CM the binocular advantage was again 5-6dB, even when the carrier noise was uncorrelated, anti-correlated, or at orthogonal orientations in the two eyes. Binocular combination for CM probably arises from summation of envelope responses, and not from summation of these conflicting carrier patterns. Antiphase signals produced no binocular advantage, but thresholds were about 1-3dB higher than monocular ones. This is not consistent with simple linear summation, which should give complete cancellation and unmeasurably high thresholds. We propose a three-channel model in which noisy monocular responses to the envelope are binocularly combined in a contrast-weighted sum, but also remain separately available to perception via a max operator. Vision selects the largest of the three responses. With in-phase gratings the binocular channel dominates, but antiphase gratings cancel in the binocular channel and the monocular channels mediate detection. The small antiphase disadvantage might be explained by a subtle influence of background responses on binocular and monocular detection.