8 resultados para LHCI pigment-protein complex

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The muscarinic receptor from the cerebral cortex, heart, and lacrimal gland can be solubilized in the zwitterionic detergent 3-(3-cholamidopropyl)dimethylammonio-2-hydroxy-1-propane sulfonate (CHAPSO) with retention of high affinity [3H]N-methyls-copolamine binding. However, in this detergent there are significant differences in the binding properties of the receptors, compared with those observed in membranes and digitonin solution. Some agents retain a degree of selectivity. In the heart and cortex, agonists can bind with high affinity to a receptor-GTP-binding protein complex. A second, lower affinity, agonist binding state is also present, which resembles a class of sites seen in membranes but not in digitonin solution. The high affinity agonist binding state has been resolved from the lower affinity state on sucrose density gradient centrifugation. Hydrodynamic analysis suggests that the high affinity state is approximately 110,000 Da larger than the lower affinity state. The binding properties of the receptor in CHAPSO can be altered to those seen in digitonin by exchanging detergents after CHAPSO solubilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DOCK180 is the archetype of the DOCK180-family guanine nucleotide exchange factor for small GTPases Rac1 and Cdc42. DOCK180-family proteins share two conserved domains, called DOCK homology region (DHR)-1 and -2. Although the function of DHR2 is to activate Rac1, DHR1 is required for binding to phosphoinositides. To better understand the function of DHR1, we searched for its binding partners by direct nanoflow liquid chromatography/tandem mass spectrometry, and we identified sorting nexins (SNX) 1, 2, 5, and 6, which make up a multimeric protein complex mediating endosome-to-trans-Golgi-network (TGN) retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Among these SNX proteins, SNX5 was coimmunoprecipitated with DOCK180 most efficiently. In agreement with this observation, DOCK180 colocalized with SNX5 at endosomes. The RNA interference-mediated knockdowns of SNX5 and DOCK180, but not Rac1, resulted in the redistribution of CI-MPR from TGN to endosomes. Furthermore, expression of the DOCK180 DHR1 domain was sufficient to restore the perturbed CI-MPR distribution in DOCK180 knockdown cells. These data suggest that DOCK180 regulates CI-MPR trafficking via SNX5 and that this function is independent of its guanine nucleotide exchange factor activity toward Rac1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The calcitonin-gene- related peptide (CGRP) receptor is unique among G-protein coupled receptors (GPCRs) as it consists of at least three proteins: calcitonin receptor like receptor (CLR), receptor activity modifying protein (RAMP)1 and receptor component protein (RCP). An endogenous agonist for this curious receptor is aCGRP, which is a sensory nerve-derived peptide made up of 37 amino acids. aCGRP acts as a potent vasodilator having pronounced effects on arterioles and capillaries. Understanding the pharmacodynamics of the CGRP receptor may have pharmaceutical benefit as the receptor has been associated with the onset of migraines and implicated in Raynauds syndrome. The primary aim of this thesis was to identify functionally important residues in the extracellular face of the CGRP receptor. Three areas of interest were selected including the extreme N-terminus of the CLR, extracellular loop 1 (ECL1) of the CLR and its associated transmembrane (TM) regions, and finally extracellular loop 3 (ECL3) of the CLR and its juxtamembrane regions. A site-directed mutagenesis (SDM) strategy was used to investigate these regions, primarily substituting the innate residues of CLR with alanine and assessing the mutation on multiple criteria including a functional cAMP assay, cell-surface expression, total expression, agonist-mediated internalisation and aCGRP binding. The results are interpreted and discussed taking into consideration contemporary concepts surrounding Secretin-like GPCRs. Moreover, the thesis also contains details of RAMP purification. Overall the thesis provides novel data that furthers insight into the complex phenomenon of CGRP receptor activation. Site-directed mutants have been identified that affect aCGRP binding, receptor signal transduction, the CLR/RAMP1 interface and the integrity of the protein complex structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian retromer is a multimeric protein complex involved in mediating endosome-to-trans-Golgi-network retrograde transport of the cation-independent mannose-6-phosphate receptor. The retromer is composed of two subcomplexes, one containing SNX1 and forming a membrane-bound coat, the other comprising VPS26, VPS29 and VPS35 and being cargo-selective. In yeast, an additional sorting nexin--Vps17p--is a component of the membrane bound coat. It remains unclear whether the mammalian retromer requires a functional equivalent of Vps17p. Here, we have used an RNAi loss-of-function screen to examine whether any of the other 30 mammalian sorting nexins are required for retromer-mediated endosome-to-trans-Golgi-network retrieval of the cation-independent mannose-6-phosphate receptor. Using this screen, we identified two proteins, SNX5 and SNX6, that, when suppressed, induced a phenotype similar to that observed upon suppression of known retromer components. Whereas SNX5 and SNX6 colocalised with SNX1 on early endosomes, in immunoprecipitation experiments only SNX6 appeared to exist in a complex with SNX1. Interestingly, suppression of SNX5 and/or SNX6 resulted in a significant loss of SNX1, an effect that seemed to result from post-translational regulation of the SNX1 level. Such data suggest that SNX1 and SNX6 exist in a stable, endosomally associated complex that is required for retromer-mediated retrieval of the cation-independent mannose-6-phosphate receptor. SNX5 and SNX6 may therefore constitute functional equivalents of Vps17p in mammals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen bonds play important roles in maintaining the structure of proteins and in the formation of most biomolecular protein-ligand complexes. All amino acids can act as hydrogen bond donors and acceptors. Among amino acids, Histidine is unique, as it can exist in neutral or positively charged forms within the physiological pH range of 5.0 to 7.0. Histidine can thus interact with other aromatic residues as well as forming hydrogen bonds with polar and charged residues. The ability of His to exchange a proton lies at the heart of many important functional biomolecular interactions, including immunological ones. By using molecular docking and molecular dynamics simulation, we examine the influence of His protonation/deprotonation on peptide binding affinity to MHC class II proteins from locus HLA-DP. Peptide-MHC interaction underlies the adaptive cellular immune response, upon which the next generation of commercially-important vaccines will depend. Consistent with experiment, we find that peptides containing protonated His residues bind better to HLA-DP proteins than those with unprotonated His. Enhanced binding at pH 5.0 is due, in part, to additional hydrogen bonds formed between peptide His+ and DP proteins. In acidic endosomes, protein His79β is predominantly protonated. As a result, the peptide binding cleft narrows in the vicinity of His79β, which stabilizes the peptide - HLA-DP protein complex. © 2014 Bentham Science Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: HLA-DPs are class II MHC proteins mediating immune responses to many diseases. Peptides bind MHC class II proteins in the acidic environment within endosomes. Acidic pH markedly elevates association rate constants but dissociation rates are almost unchanged in the pH range 5.0 - 7.0. This pH-driven effect can be explained by the protonation/deprotonation states of Histidine, whose imidazole has a pKa of 6.0. At pH 5.0, imidazole ring is protonated, making Histidine positively charged and very hydrophilic, while at pH 7.0 imidazole is unprotonated, making Histidine less hydrophilic. We develop here a method to predict peptide binding to the four most frequent HLA-DP proteins: DP1, DP41, DP42 and DP5, using a molecular docking protocol. Dockings to virtual combinatorial peptide libraries were performed at pH 5.0 and pH 7.0. Results: The X-ray structure of the peptide - HLA-DP2 protein complex was used as a starting template to model by homology the structure of the four DP proteins. The resulting models were used to produce virtual combinatorial peptide libraries constructed using the single amino acid substitution (SAAS) principle. Peptides were docked into the DP binding site using AutoDock at pH 5.0 and pH 7.0. The resulting scores were normalized and used to generate Docking Score-based Quantitative Matrices (DS-QMs). The predictive ability of these QMs was tested using an external test set of 484 known DP binders. They were also compared to existing servers for DP binding prediction. The models derived at pH 5.0 predict better than those derived at pH 7.0 and showed significantly improved predictions for three of the four DP proteins, when compared to the existing servers. They are able to recognize 50% of the known binders in the top 5% of predicted peptides. Conclusions: The higher predictive ability of DS-QMs derived at pH 5.0 may be rationalised by the additional hydrogen bond formed between the backbone carbonyl oxygen belonging to the peptide position before p1 (p-1) and the protonated ε-nitrogen of His 79β. Additionally, protonated His residues are well accepted at most of the peptide binding core positions which is in a good agreement with the overall negatively charged peptide binding site of most MHC proteins. © 2012 Patronov et al.; licensee BioMed Central Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hypercoiling poly(styrene-ALT-maleic anhydride) (PSMA) is known to undergo conformational transition in response to environmental stimuli. This behavior allows it to associate with the phospholipid, 2-dilauryl-SN-glycero-3- phosphocholine (DLPC) to produce nanostructures analogous to lipoproteins. The complex represents a new bio-mimetic delivery vehicle with applications in the cosmetic and pharmaceutical industries. This study investigates, for the first time, the association behavior of PSMA and DLPC through the combination of different analytical techniques. The results indicate that the association is primarily driven by hydrophobic interactions and depends on various factors including the polymer/lipid ratio, the polymer molecular weight and the pH of the aqueous environment. The conformational transition of PSMA leads to the formation of discrete micellar complexes involving anisotropic-to-isotropic lipid phase transformation. As the number of hydrophobic moieties in the polymer is increased, the pH-dependent conformational transition of the polymer plays less important part in achieving this phase transition of the lipid. © (2012) Trans Tech Publications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phosphoinositides are important components of eukaryotic membranes that are required for multiple forms of membrane dynamics. Phosphoinositides are involved in defining membrane identity, mediate cell signalling and control membrane trafficking events. Due to their pivotal role in membrane dynamics, phosphoinositide de-regulation contributes to various human diseases. In this review, we will focus on the newly emerging regulation of the PIKfyve complex, a phosphoinositide kinase that converts the endosomal phosphatidylinositol-3-phosphate [PI(3)P] to phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2)], a low abundance phosphoinositide of outstanding importance for neuronal integrity and function. Loss of PIKfyve function is well known to result in neurodegeneration in both mousemodels and human patients. Our recent work has surprisingly identified the amyloid precursor protein (APP), the central molecule in Alzheimer s disease aetiology, as a novel interaction partner of a subunit of the PIKfyve complex, Vac14. Furthermore, it has been shown that APP modulates PIKfyve function and PI(3,5)P2 dynamics, suggesting that the APP gene family functions as regulator of PI(3,5)P2 metabolism. The recent advances discussed in this review suggest a novel, unexpected, â-amyloid-independent mechanism for neurodegeneration in Alzheimer s disease.