5 resultados para LC-APCI-MS

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The performances of five different ESI sources coupled to a polystyrene-divinylbenzene monolithic column were compared in a series of LC-ESI-MS/MS analyses of Escherichia coli outer membrane proteins. The sources selected for comparison included two different modifications of the standard electrospray source, a commercial low-flow sprayer, a stainless steel nanospray needle and a coated glass Picotip. Respective performances were judged on sensitivity and the number and reproducibility of significant protein identifications obtained through the analysis of multiple identical samples. Data quality varied between that of a ground silica capillary, with 160 total protein identifications, the lowest number of high quality peptide hits obtained (3012), and generally peaks of lower intensity; and a stainless steel nanospray needle, which resulted in increased precursor ion abundance, the highest-quality peptide fragmentation spectra (5414) and greatest number of total protein identifications (259) exhibiting the highest MASCOT scores (average increase in score of 27.5% per identified protein). The data presented show that, despite increased variability in comparative ion intensity, the stainless steel nanospray needle provides the highest overall sensitivity. However, the resulting data were less reproducible in terms of proteins identified in complex mixtures -- arguably due to an increased number of high intensity precursor ion candidates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One hundred sixty-eight multiply substituted 1,4-benzodiazepines have been prepared by a five-step solid-phase combinatorial approach using syn-phase crowns as a solid support and a hydroxymethyl-phenoxy-acetamido linkage (Wang linker). The substituents of the 1,4-benzodiazepine scaffold have been varied in the -3, -5, -7, and 8-positions and the combinatorial library was evaluated in a cholecystokinin (CCK) radioligand binding assay. 3-Alkylated 1,4-benzodiazepines with selectivity towards the CCK-B (CCK2) receptor have been optimized on the lipophilic side chain, the ketone moiety, and the stereochemistry at the 3-position. Various novel 3-alkylated compounds were synthesized and [S]3-propyl-5-phenyl-1,4-benzodiazepin-2-one, [S]NV-A, has shown a CCK-B selective binding at about 180 nM. Fifty-eight compounds of this combinatorial library were purified by preparative TLC and 25 compounds were isolated and fully characterized by TLC, IR, APCI-MS, and 1H/13C-NMR spectroscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phospholipids are complex and varied biomolecules that are susceptible to lipid peroxidation after attack by free radicals or electrophilic oxidants and can yield a large number of different oxidation products. There are many available methods for detecting phospholipid oxidation products, but also various limitations and problems. Electrospray ionization mass spectrometry allows the simultaneous but specific analysis of multiple species with good sensitivity and has a further advantage that it can be coupled to liquid chromatography for separation of oxidation products. Here, we explain the principles of oxidized phospholipid analysis by electrospray mass spectrometry and describe fragmentation routines for surveying the structural properties of the analytes, in particular precursor ion and neutral loss scanning. These allow targeted detection of phospholipid headgroups and identification of phospholipids containing hydroperoxides and chlorine, as well as the detection of some individual oxidation products by their specific fragmentation patterns. We describe instrument protocols for carrying out these survey routines on a QTrap5500 mass spectrometer and also for interfacing with reverse-phase liquid chromatography. The article highlights critical aspects of the analysis as well as some limitations of the methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phagocytic cells produce a variety of oxidants as part of the immune defence, which react readily both with proteins and lipids, and could contribute to the oxidation of low density lipoprotein in atherosclerosis. We have investigated the oxidation of phospholipid vesicles by isolated human polymorphonuclear and mononuclear leukocytes, to provide a model of lipid oxidation in the absence of competing protein. PMA-stimulated cells were incubated with phospholipid vesicles contammg dipalmitoyl phosphatidylcholine (DPPC), palmitoyl-arachidonoyl phosphatidylcholine (PAPC), and stearoyl-oleoyl phosphatidylcholine (SOPC), before extraction of the lipids for analysis by HPLC coupled to electrospray mass spectrometry. In this system, oxidized phosphatidylcholines elute earlier than the native lipids owing to their decreased hydrophobicity, and can be identified according to their molecular mass. The formation of monohydroperoxides of P APC was observed routinely, together with low levels of hydroxides, but no chlorohydrin derivatives of P APC or SOPC were detected. However, the major oxidized product occurred at 828 m/z, and was identified as I-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine. These results show that phagocytes triggered by PMA cause oxidative damage to lipids predominantly by free radical mechanisms, and that electrophilic addition involving HOCl is not a major mechanism of attack. The contribution of myeloperoxidase and metal ions to the oxidation process is currently being investigated, and preliminary data suggest that myeloperoxidase-derived oxidants are responsible for the epoxyisoprostane phospholipid formation. The identification of an epoxyisoprostane phospholipid as the major product following phagocyte-induced phospholipid oxidation is novel and has implications for phagocyte involvement in atherogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of lipid peroxidation is a commonly used method of detecting oxidative damage to biological tissues, but the most frequently used methods, including MS, measure breakdown products and are therefore indirect. We have coupled reversed-phase HPLC with positive-ionization electrospray MS (LC-MS) to provide a method for separating and detecting intact oxidized phospholipids in oxidatively stressed mammalian cells without extensive sample preparation. The elution profile of phospholipid hydroperoxides and chlorohydrins was first characterized using individual phospholipids or a defined phospholipid mixture as a model system. The facility of detection of the oxidized species in complex mixtures was greatly improved compared with direct-injection MS analysis, as they eluted earlier than the native lipids, owing to the decrease in hydrophobicity. In U937 and HL60 cells treated in vitro with t-butylhydroperoxide plus Fe2+, lipid oxidation could not be observed by direct injection, but LC-MS allowed the detection of monohydroperoxides of palmitoyl-linoleoyl and stearoyl-linoleoyl phosphatidylcholines. The levels of hydroperoxides observed in U937 cells were found to depend on the duration and severity of the oxidative stress. In cells treated with HOCl, chlorohydrins of palmitoyloleoyl phosphatidylcholine were observed by LC-MS. The method was able to detect very small amounts of oxidized lipids compared with the levels of native lipids present. The membrane-lipid profiles of these cells were found to be quite resistant to damage until high concentrations of oxidants were used. This is the first report of direct detection by LC-MS of intact oxidized phospholipids induced in cultured cells subjected to oxidative stress.