7 resultados para Kolmogorov

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kolmogorov-Smirnov (KS) test is a non-parametric test which can be used in two different circumstances. First, it can be used as an alternative to chi-square (?2) as a ‘goodness-of-fit’ test to compare whether a given ‘observed’ sample of observations conforms to an ‘expected’ distribution of results (KS, one-sample test). An example of the use of the one-sample test to determine whether a sample of observations was normally distributed was described previously. Second, it can be used as an alternative to the Mann-Whitney test to compare two independent samples of observations (KS, two-sample test). Hence, this statnote describes the use of the KS test with reference to two scenarios: (1) to compare the observed frequency (Fo) of soil samples containing cysts of the protozoan Naegleria collected each month for a year with an expected equal frequency (Fe) across months (one-sample test), and (2) to compare the abundance of bacteria on cloths and sponges sampled in a domestic kitchen environment (two-sample test).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper, addresses the problem of novelty detection in the case that the observed data is a mixture of a known 'background' process contaminated with an unknown other process, which generates the outliers, or novel observations. The framework we describe here is quite general, employing univariate classification with incomplete information, based on knowledge of the distribution (the 'probability density function', 'pdf') of the data generated by the 'background' process. The relative proportion of this 'background' component (the 'prior' 'background' 'probability), the 'pdf' and the 'prior' probabilities of all other components are all assumed unknown. The main contribution is a new classification scheme that identifies the maximum proportion of observed data following the known 'background' distribution. The method exploits the Kolmogorov-Smirnov test to estimate the proportions, and afterwards data are Bayes optimally separated. Results, demonstrated with synthetic data, show that this approach can produce more reliable results than a standard novelty detection scheme. The classification algorithm is then applied to the problem of identifying outliers in the SIC2004 data set, in order to detect the radioactive release simulated in the 'oker' data set. We propose this method as a reliable means of novelty detection in the emergency situation which can also be used to identify outliers prior to the application of a more general automatic mapping algorithm. © Springer-Verlag 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Parkinson’s disease (PD) is an incurable neurological disease with approximately 0.3% prevalence. The hallmark symptom is gradual movement deterioration. Current scientific consensus about disease progression holds that symptoms will worsen smoothly over time unless treated. Accurate information about symptom dynamics is of critical importance to patients, caregivers, and the scientific community for the design of new treatments, clinical decision making, and individual disease management. Long-term studies characterize the typical time course of the disease as an early linear progression gradually reaching a plateau in later stages. However, symptom dynamics over durations of days to weeks remains unquantified. Currently, there is a scarcity of objective clinical information about symptom dynamics at intervals shorter than 3 months stretching over several years, but Internet-based patient self-report platforms may change this. Objective: To assess the clinical value of online self-reported PD symptom data recorded by users of the health-focused Internet social research platform PatientsLikeMe (PLM), in which patients quantify their symptoms on a regular basis on a subset of the Unified Parkinson’s Disease Ratings Scale (UPDRS). By analyzing this data, we aim for a scientific window on the nature of symptom dynamics for assessment intervals shorter than 3 months over durations of several years. Methods: Online self-reported data was validated against the gold standard Parkinson’s Disease Data and Organizing Center (PD-DOC) database, containing clinical symptom data at intervals greater than 3 months. The data were compared visually using quantile-quantile plots, and numerically using the Kolmogorov-Smirnov test. By using a simple piecewise linear trend estimation algorithm, the PLM data was smoothed to separate random fluctuations from continuous symptom dynamics. Subtracting the trends from the original data revealed random fluctuations in symptom severity. The average magnitude of fluctuations versus time since diagnosis was modeled by using a gamma generalized linear model. Results: Distributions of ages at diagnosis and UPDRS in the PLM and PD-DOC databases were broadly consistent. The PLM patients were systematically younger than the PD-DOC patients and showed increased symptom severity in the PD off state. The average fluctuation in symptoms (UPDRS Parts I and II) was 2.6 points at the time of diagnosis, rising to 5.9 points 16 years after diagnosis. This fluctuation exceeds the estimated minimal and moderate clinically important differences, respectively. Not all patients conformed to the current clinical picture of gradual, smooth changes: many patients had regimes where symptom severity varied in an unpredictable manner, or underwent large rapid changes in an otherwise more stable progression. Conclusions: This information about short-term PD symptom dynamics contributes new scientific understanding about the disease progression, currently very costly to obtain without self-administered Internet-based reporting. This understanding should have implications for the optimization of clinical trials into new treatments and for the choice of treatment decision timescales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of hMSCs for allogeneic therapies requiring lot sizes of billions of cells will necessitate large-scale culture techniques such as the expansion of cells on microcarriers in bioreactors. Whilst much research investigating hMSC culture on microcarriers has focused on growth, much less involves their harvesting for passaging or as a step towards cryopreservation and storage. A successful new harvesting method has recently been outlined for cells grown on SoloHill microcarriers in a 5L bioreactor [1]. Here, this new method is set out in detail, harvesting being defined as a two-step process involving cell 'detachment' from the microcarriers' surface followed by the 'separation' of the two entities. The new detachment method is based on theoretical concepts originally developed for secondary nucleation due to agitation. Based on this theory, it is suggested that a short period (here 7min) of intense agitation in the presence of a suitable enzyme should detach the cells from the relatively large microcarriers. In addition, once detached, the cells should not be damaged because they are smaller than the Kolmogorov microscale. Detachment was then successfully achieved for hMSCs from two different donors using microcarrier/cell suspensions up to 100mL in a spinner flask. In both cases, harvesting was completed by separating cells from microcarriers using a Steriflip® vacuum filter. The overall harvesting efficiency was >95% and after harvesting, the cells maintained all the attributes expected of hMSC cells. The underlying theoretical concepts suggest that the method is scalable and this aspect is discussed too. © 2014 The Authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In our recent work in different bioreactors up to 2.5L in scale, we have successfully cultured hMSCs using the minimum agitator speed required for complete microcarrier suspension, N JS. In addition, we also reported a scaleable protocol for the detachment from microcarriers in spinner flasks of hMSCs from two donors. The essence of the protocol is the use of a short period of intense agitation in the presence of enzymes such that the cells are detached; but once detachment is achieved, the cells are smaller than the Kolmogorov scale of turbulence and hence not damaged. Here, the same approach has been effective for culture at N JS and detachment in-situ in 15mL ambr™ bioreactors, 100mL spinner flasks and 250mL Dasgip bioreactors. In these experiments, cells from four different donors were used along with two types of microcarrier with and without surface coatings (two types), four different enzymes and three different growth media (with and without serum), a total of 22 different combinations. In all cases after detachment, the cells were shown to retain their desired quality attributes and were able to proliferate. This agitation strategy with respect to culture and harvest therefore offers a sound basis for a wide range of scales of operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of the energy spectrum and of the vortex-density fluctuation spectrum in superfluid turbulence seem to contradict each other. Using a numerical model, we show that at each instance of time the total vortex line density can be decomposed into two parts: one formed by metastable bundles of coherent vortices, and one in which the vortices are randomly oriented. We show that the former is responsible for the observed Kolmogorov energy spectrum, and the latter for the spectrum of the vortex line density fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of human mesenchymal stem cells (hMSCs) in regenerative medicine is a potential major advance for the treatment of many medical conditions, especially with the use of allogeneic therapies where the cells from a single donor can be used to treat ailments in many patients. Such cells must be grown attached to surfaces and for large scale production, it is shown that stirred bioreactors containing ~200 μm particles (microcarriers) can provide such a surface. It is also shown that the just suspended condition, agitator speed NJS, provides a satisfactory condition for cell growth by minimizing the specific energy dissipation rate, εT, in the bioreactor whilst still meeting the oxygen demand of the cells. For the cells to be used for therapeutic purposes, they must be detached from the microcarriers before being cryopreserved. A strategy based on a short period (~7 min) of very high εT, based on theories of secondary nucleation, is effective at removing >99% cells. Once removed, the cells are smaller than the Kolmogorov scale of turbulence and hence not damaged. This approach is shown to be successful for culture and detachment in 4 types of stirred bioreactors from 15 mL to 5 L.