19 resultados para Knowledge representation (Information theory)
em Aston University Research Archive
Resumo:
Ontologies have become the knowledge representation medium of choice in recent years for a range of computer science specialities including the Semantic Web, Agents, and Bio-informatics. There has been a great deal of research and development in this area combined with hype and reaction. This special issue is concerned with the limitations of ontologies and how these can be addressed, together with a consideration of how we can circumvent or go beyond these constraints. The introduction places the discussion in context and presents the papers included in this issue.
Resumo:
Recently, we have seen an explosion of interest in ontologies as artifacts to represent human knowledge and as critical components in knowledge management, the semantic Web, business-to-business applications, and several other application areas. Various research communities commonly assume that ontologies are the appropriate modeling structure for representing knowledge. However, little discussion has occurred regarding the actual range of knowledge an ontology can successfully represent.
Resumo:
In a certain automobile factory, batch-painting of the body types in colours is controlled by an allocation system. This tries to balance production with orders, whilst making optimally-sized batches of colours. Sequences of cars entering painting cannot be optimised for easy selection of colour and batch size. `Over-production' is not allowed, in order to reduce buffer stocks of unsold vehicles. Paint quality is degraded by random effects. This thesis describes a toolkit which supports IKBS in an object-centred formalism. The intended domain of use for the toolkit is flexible manufacturing. A sizeable application program was developed, using the toolkit, to test the validity of the IKBS approach in solving the real manufacturing problem above, for which an existing conventional program was already being used. A detailed statistical analysis of the operating circumstances of the program was made to evaluate the likely need for the more flexible type of program for which the toolkit was intended. The IKBS program captures the many disparate and conflicting constraints in the scheduling knowledge and emulates the behaviour of the program installed in the factory. In the factory system, many possible, newly-discovered, heuristics would be awkward to represent and it would be impossible to make many new extensions. The representation scheme is capable of admitting changes to the knowledge, relying on the inherent encapsulating properties of object-centres programming to protect and isolate data. The object-centred scheme is supported by an enhancement of the `C' programming language and runs under BSD 4.2 UNIX. The structuring technique, using objects, provides a mechanism for separating control of expression of rule-based knowledge from the knowledge itself and allowing explicit `contexts', within which appropriate expression of knowledge can be done. Facilities are provided for acquisition of knowledge in a consistent manner.
Resumo:
This paper describes the knowledge elicitation and knowledge representation aspects of a system being developed to help with the design and maintenance of relational data bases. The size algorithmic components. In addition, the domain contains multiple experts, but any given expert's knowledge of this large domain is only partial. The paper discusses the methods and techniques used for knowledge elicitation, which was based on a "broad and shallow" approach at first, moving to a "narrow and deep" one later, and describes the models used for knowledge representation, which were based on a layered "generic and variants" approach. © 1995.
Resumo:
We present information-theory analysis of the tradeoff between bit-error rate improvement and the data-rate loss using skewed channel coding to suppress pattern-dependent errors in digital communications. Without loss of generality, we apply developed general theory to the particular example of a high-speed fiber communication system with a strong patterning effect. © 2007 IEEE.
Resumo:
In this paper we summarize our recently proposed work on the information theory analysis of regenerative channels. We discuss how the design and the transfer function properties of the regenerator affect the noise statistics and enable Shannon capacities higher than that of the corresponding linear channels (in the absence of regeneration).
Resumo:
Neural networks can be regarded as statistical models, and can be analysed in a Bayesian framework. Generalisation is measured by the performance on independent test data drawn from the same distribution as the training data. Such performance can be quantified by the posterior average of the information divergence between the true and the model distributions. Averaging over the Bayesian posterior guarantees internal coherence; Using information divergence guarantees invariance with respect to representation. The theory generalises the least mean squares theory for linear Gaussian models to general problems of statistical estimation. The main results are: (1)~the ideal optimal estimate is always given by average over the posterior; (2)~the optimal estimate within a computational model is given by the projection of the ideal estimate to the model. This incidentally shows some currently popular methods dealing with hyperpriors are in general unnecessary and misleading. The extension of information divergence to positive normalisable measures reveals a remarkable relation between the dlt dual affine geometry of statistical manifolds and the geometry of the dual pair of Banach spaces Ld and Ldd. It therefore offers conceptual simplification to information geometry. The general conclusion on the issue of evaluating neural network learning rules and other statistical inference methods is that such evaluations are only meaningful under three assumptions: The prior P(p), describing the environment of all the problems; the divergence Dd, specifying the requirement of the task; and the model Q, specifying available computing resources.
Resumo:
The research is concerned with the terminological problems that computer users experience when they try to formulate their knowledge needs and attempt to access information contained in computer manuals or online help systems while building up their knowledge. This is the recognised but unresolved problem of communication between the specialist and the layman. The initial hypothesis was that computer users, through their knowledge of language, have some prior knowledge of the subdomain of computing they are trying to come to terms with, and that language can be a facilitating mechanism, or an obstacle, in the development of that knowledge. Related to this is the supposition that users have a conceptual apparatus based on both theoretical knowledge and experience of the world, and of several domains of special reference related to the environment in which they operate. The theoretical argument was developed by exploring the relationship between knowledge and language, and considering the efficacy of terms as agents of special subject knowledge representation. Having charted in a systematic way the territory of knowledge sources and types, we were able to establish that there are many aspects of knowledge which cannot be represented by terms. This submission is important, as it leads to the realisation that significant elements of knowledge are being disregarded in retrieval systems because they are normally expressed by language elements which do not enjoy the status of terms. Furthermore, we introduced the notion of `linguistic ease of retrieval' as a challenge to more conventional thinking which focuses on retrieval results.
Resumo:
This Thesis addresses the problem of automated false-positive free detection of epileptic events by the fusion of information extracted from simultaneously recorded electro-encephalographic (EEG) and the electrocardiographic (ECG) time-series. The approach relies on a biomedical case for the coupling of the Brain and Heart systems through the central autonomic network during temporal lobe epileptic events: neurovegetative manifestations associated with temporal lobe epileptic events consist of alterations to the cardiac rhythm. From a neurophysiological perspective, epileptic episodes are characterised by a loss of complexity of the state of the brain. The description of arrhythmias, from a probabilistic perspective, observed during temporal lobe epileptic events and the description of the complexity of the state of the brain, from an information theory perspective, are integrated in a fusion-of-information framework towards temporal lobe epileptic seizure detection. The main contributions of the Thesis include the introduction of a biomedical case for the coupling of the Brain and Heart systems during temporal lobe epileptic seizures, partially reported in the clinical literature; the investigation of measures for the characterisation of ictal events from the EEG time series towards their integration in a fusion-of-knowledge framework; the probabilistic description of arrhythmias observed during temporal lobe epileptic events towards their integration in a fusion-of-knowledge framework; and the investigation of the different levels of the fusion-of-information architecture at which to perform the combination of information extracted from the EEG and ECG time-series. The performance of the method designed in the Thesis for the false-positive free automated detection of epileptic events achieved a false-positives rate of zero on the dataset of long-term recordings used in the Thesis.
Resumo:
This paper makes a case for taking a systems view of knowledge management within health-care provision, concentrating on the emergency care process in the UK National Health Service. It draws upon research in two casestudy organizations (a hospital and an ambulance service). The case-study organizations appear to be approaching knowledge (and information) management in a somewhat fragmented way. They are trying to think more holistically, but (perhaps) because of the ways their organizations and their work are structured, they cannot ‘see’ the whole of the care process. The paper explores the complexity of knowledge management in emergency health care and draws the distinction for knowledge management between managing local and operational knowledge, and global and clinical knowledge.
Resumo:
Purpose - Managers at the company attempt to implement a knowledge management information system in an attempt to avoid loss of expertise while improving control and efficiency. The paper seeks to explore the implications of the technological solution to employees within the company. Design/methodology/approach - The paper reports qualitative research conducted in a single organization. Evidence is presented in the form of interview extracts. Findings - The case section of the paper presents the accounts of organizational participants. The accounts reveal the workers' reactions to the technology-based system and something of their strategies of resistance to the system. These accounts also provide glimpses of the identity construction engaged in by these knowledge workers. The setting for the research is in a knowledge-intensive primary industry. Research was conducted through observation and interviews. Research limitations/implications - The issues identified are explored in a single case-study setting. Future research could look at the relevance of the findings to other settings. Practical implications - The case evidence presented indicates some of the complexity of implementation of information systems in organizations. This could certainly be seen as more evidence of the uncertainty associated with organizational change and of the need for managers not to expect an easy adoption of intrusive IT solutions. Originality/value - This paper adds empirical insight to a largely conceptual literature. © Emerald Group Publishing Limited.
Resumo:
Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.
Resumo:
This thesis presents a thorough and principled investigation into the application of artificial neural networks to the biological monitoring of freshwater. It contains original ideas on the classification and interpretation of benthic macroinvertebrates, and aims to demonstrate their superiority over the biotic systems currently used in the UK to report river water quality. The conceptual basis of a new biological classification system is described, and a full review and analysis of a number of river data sets is presented. The biological classification is compared to the common biotic systems using data from the Upper Trent catchment. This data contained 292 expertly classified invertebrate samples identified to mixed taxonomic levels. The neural network experimental work concentrates on the classification of the invertebrate samples into biological class, where only a subset of the sample is used to form the classification. Other experimentation is conducted into the identification of novel input samples, the classification of samples from different biotopes and the use of prior information in the neural network models. The biological classification is shown to provide an intuitive interpretation of a graphical representation, generated without reference to the class labels, of the Upper Trent data. The selection of key indicator taxa is considered using three different approaches; one novel, one from information theory and one from classical statistical methods. Good indicators of quality class based on these analyses are found to be in good agreement with those chosen by a domain expert. The change in information associated with different levels of identification and enumeration of taxa is quantified. The feasibility of using neural network classifiers and predictors to develop numeric criteria for the biological assessment of sediment contamination in the Great Lakes is also investigated.
Resumo:
Design of casting entails the knowledge of various interacting factors that are unique to casting process, and, quite often, product designers do not have the required foundry-specific knowledge. Casting designers normally have to liaise with casting experts in order to ensure the product designed is castable and the optimum casting method is selected. This two-way communication results in long design lead times, and lack of it can easily lead to incorrect casting design. A computer-based system at the discretion of a design engineer can, however, alleviate this problem and enhance the prospect of casting design for manufacture. This paper proposes a knowledge-based expert system approach to assist casting product designers in selecting the most suitable casting process for specified casting design requirements, during the design phase of product manufacture. A prototype expert system has been developed, based on production rules knowledge representation technique. The proposed system consists of a number of autonomous but interconnected levels, each dealing with a specific group of factors, namely, casting alloy, shape and complexity parameters, accuracy requirements and comparative costs, based on production quantity. The user interface has been so designed to allow the user to have a clear view of how casting design parameters affect the selection of various casting processes at each level; if necessary, the appropriate design changes can be made to facilitate the castability of the product being designed, or to suit the design to a preferred casting method.
Resumo:
This paper presents a model for measuring personal knowledge development in online learning environments. It is based on Nonaka‘s SECI model of organisational knowledge creation. It is argued that Socialisation is not a relevant mode in the context of online learning and was therefore not covered in the measurement instrument. Therefore, the remaining three of SECI‘s knowledge conversion modes, namely Externalisation, Combination, and Internalisation were used and a measurement instrument was created which also examines the interrelationships between the three modes. Data was collected using an online survey, in which online learners report on their experiences of personal knowledge development in online learning environments. In other words, the instrument measures the magnitude of online learners‘ Externalisation and combination activities as well as their level of internalisation, which is the outcome of their personal knowledge development in online learning.