24 resultados para Knowledge representation

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ontologies have become the knowledge representation medium of choice in recent years for a range of computer science specialities including the Semantic Web, Agents, and Bio-informatics. There has been a great deal of research and development in this area combined with hype and reaction. This special issue is concerned with the limitations of ontologies and how these can be addressed, together with a consideration of how we can circumvent or go beyond these constraints. The introduction places the discussion in context and presents the papers included in this issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, we have seen an explosion of interest in ontologies as artifacts to represent human knowledge and as critical components in knowledge management, the semantic Web, business-to-business applications, and several other application areas. Various research communities commonly assume that ontologies are the appropriate modeling structure for representing knowledge. However, little discussion has occurred regarding the actual range of knowledge an ontology can successfully represent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a certain automobile factory, batch-painting of the body types in colours is controlled by an allocation system. This tries to balance production with orders, whilst making optimally-sized batches of colours. Sequences of cars entering painting cannot be optimised for easy selection of colour and batch size. `Over-production' is not allowed, in order to reduce buffer stocks of unsold vehicles. Paint quality is degraded by random effects. This thesis describes a toolkit which supports IKBS in an object-centred formalism. The intended domain of use for the toolkit is flexible manufacturing. A sizeable application program was developed, using the toolkit, to test the validity of the IKBS approach in solving the real manufacturing problem above, for which an existing conventional program was already being used. A detailed statistical analysis of the operating circumstances of the program was made to evaluate the likely need for the more flexible type of program for which the toolkit was intended. The IKBS program captures the many disparate and conflicting constraints in the scheduling knowledge and emulates the behaviour of the program installed in the factory. In the factory system, many possible, newly-discovered, heuristics would be awkward to represent and it would be impossible to make many new extensions. The representation scheme is capable of admitting changes to the knowledge, relying on the inherent encapsulating properties of object-centres programming to protect and isolate data. The object-centred scheme is supported by an enhancement of the `C' programming language and runs under BSD 4.2 UNIX. The structuring technique, using objects, provides a mechanism for separating control of expression of rule-based knowledge from the knowledge itself and allowing explicit `contexts', within which appropriate expression of knowledge can be done. Facilities are provided for acquisition of knowledge in a consistent manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the knowledge elicitation and knowledge representation aspects of a system being developed to help with the design and maintenance of relational data bases. The size algorithmic components. In addition, the domain contains multiple experts, but any given expert's knowledge of this large domain is only partial. The paper discusses the methods and techniques used for knowledge elicitation, which was based on a "broad and shallow" approach at first, moving to a "narrow and deep" one later, and describes the models used for knowledge representation, which were based on a layered "generic and variants" approach. © 1995.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The research is concerned with the terminological problems that computer users experience when they try to formulate their knowledge needs and attempt to access information contained in computer manuals or online help systems while building up their knowledge. This is the recognised but unresolved problem of communication between the specialist and the layman. The initial hypothesis was that computer users, through their knowledge of language, have some prior knowledge of the subdomain of computing they are trying to come to terms with, and that language can be a facilitating mechanism, or an obstacle, in the development of that knowledge. Related to this is the supposition that users have a conceptual apparatus based on both theoretical knowledge and experience of the world, and of several domains of special reference related to the environment in which they operate. The theoretical argument was developed by exploring the relationship between knowledge and language, and considering the efficacy of terms as agents of special subject knowledge representation. Having charted in a systematic way the territory of knowledge sources and types, we were able to establish that there are many aspects of knowledge which cannot be represented by terms. This submission is important, as it leads to the realisation that significant elements of knowledge are being disregarded in retrieval systems because they are normally expressed by language elements which do not enjoy the status of terms. Furthermore, we introduced the notion of `linguistic ease of retrieval' as a challenge to more conventional thinking which focuses on retrieval results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Design of casting entails the knowledge of various interacting factors that are unique to casting process, and, quite often, product designers do not have the required foundry-specific knowledge. Casting designers normally have to liaise with casting experts in order to ensure the product designed is castable and the optimum casting method is selected. This two-way communication results in long design lead times, and lack of it can easily lead to incorrect casting design. A computer-based system at the discretion of a design engineer can, however, alleviate this problem and enhance the prospect of casting design for manufacture. This paper proposes a knowledge-based expert system approach to assist casting product designers in selecting the most suitable casting process for specified casting design requirements, during the design phase of product manufacture. A prototype expert system has been developed, based on production rules knowledge representation technique. The proposed system consists of a number of autonomous but interconnected levels, each dealing with a specific group of factors, namely, casting alloy, shape and complexity parameters, accuracy requirements and comparative costs, based on production quantity. The user interface has been so designed to allow the user to have a clear view of how casting design parameters affect the selection of various casting processes at each level; if necessary, the appropriate design changes can be made to facilitate the castability of the product being designed, or to suit the design to a preferred casting method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the context of the needs of the Semantic Web and Knowledge Management, we consider what the requirements are of ontologies. The ontology as an artifact of knowledge representation is in danger of becoming a Chimera. We present a series of facts concerning the foundations on which automated ontology construction must build. We discuss a number of different functions that an ontology seeks to fulfill, and also a wish list of ideal functions. Our objective is to stimulate discussion as to the real requirements of ontology engineering and take the view that only a selective and restricted set of requirements will enable the beast to fly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Classification of metamorphic rocks is normally carried out using a poorly defined, subjective classification scheme making this an area in which many undergraduate geologists experience difficulties. An expert system to assist in such classification is presented which is capable of classifying rocks and also giving further details about a particular rock type. A mixed knowledge representation is used with frame, semantic and production rule systems available. Classification in the domain requires that different facets of a rock be classified. To implement this, rocks are represented by 'context' frames with slots representing each facet. Slots are satisfied by calling a pre-defined ruleset to carry out the necessary inference. The inference is handled by an interpreter which uses a dependency graph representation for the propagation of evidence. Uncertainty is handled by the system using a combination of the MYCIN certainty factor system and the Dempster-Shafer range mechanism. This allows for positive and negative reasoning, with rules capable of representing necessity and sufficiency of evidence, whilst also allowing the implementation of an alpha-beta pruning algorithm to guide question selection during inference. The system also utilizes a semantic net type structure to allow the expert to encode simple relationships between terms enabling rules to be written with a sensible level of abstraction. Using frames to represent rock types where subclassification is possible allows the knowledge base to be built in a modular fashion with subclassification frames only defined once the higher level of classification is functioning. Rulesets can similarly be added in modular fashion with the individual rules being essentially declarative allowing for simple updating and maintenance. The knowledge base so far developed for metamorphic classification serves to demonstrate the performance of the interpreter design whilst also moving some way towards providing a useful assistant to the non-expert metamorphic petrologist. The system demonstrates the possibilities for a fully developed knowledge base to handle the classification of igneous, sedimentary and metamorphic rocks. The current knowledge base and interpreter have been evaluated by potential users and experts. The results of the evaluation show that the system performs to an acceptable level and should be of use as a tool for both undergraduates and researchers from outside the metamorphic petrography field. .

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since much knowledge is tacit, eliciting knowledge is a common bottleneck during the development of knowledge-based systems. Visual interactive simulation (VIS) has been proposed as a means for eliciting experts’ decision-making by getting them to interact with a visual simulation of the real system in which they work. In order to explore the effectiveness and efficiency of VIS based knowledge elicitation, an experiment has been carried out with decision-makers in a Ford Motor Company engine assembly plant. The model properties under investigation were the level of visual representation (2-dimensional, 2½-dimensional and 3-dimensional) and the model parameter settings (unadjusted and adjusted to represent more uncommon and extreme situations). The conclusion from the experiment is that using a 2-dimensional representation with adjusted parameter settings provides the better simulation-based means for eliciting knowledge, at least for the case modelled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assertion about the peculiarly intricate and complex character of social phenomena has, in much of social discourse, a virtually uncontested tradition. A significant part of the premise about the complexity of social phenomena is the conviction that it complicates, perhaps even inhibits the development and application of social scientific knowledge. Our paper explores the origins, the basis and the consequences of this assertion and asks in particular whether the classic complexity assertion still deserves to be invoked in analyses that ask about the production and the utilization of social scientific knowledge in modern society. We refer to one of the most prominent and politically influential social scientific theories, John Maynard Keynes' economic theory as an illustration. We conclude that, the practical value of social scientific knowledge is not necessarily dependent on a faithful, in the sense of complete, representation of (complex) social reality. Practical knowledge is context sensitive if not project bound. Social scientific knowledge that wants to optimize its practicality has to attend and attach itself to elements of practical social situations that can be altered or are actionable by relevant actors. This chapter represents an effort to re-examine the relation between social reality, social scientific knowledge and its practical application. There is a widely accepted view about the potential social utility of social scientific knowledge that invokes the peculiar complexity of social reality as an impediment to good theoretical comprehension and hence to its applicability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of most operations systems is significantly affected by the interaction of human decision-makers. A methodology, based on the use of visual interactive simulation (VIS) and artificial intelligence (AI), is described that aims to identify and improve human decision-making in operations systems. The methodology, known as 'knowledge-based improvement' (KBI), elicits knowledge from a decision-maker via a VIS and then uses AI methods to represent decision-making. By linking the VIS and AI representation, it is possible to predict the performance of the operations system under different decision-making strategies and to search for improved strategies. The KBI methodology is applied to the decision-making surrounding unplanned maintenance operations at a Ford Motor Company engine assembly plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper uses evidence gathered in two perception studies ofAustralasian and British accounting academics to reflect on aspects of the knowledge production systemwithin accounting academe. We provide evidence of the representation of multiple paradigms in many journals that are scored by participants as being of high quality. Indeed most of the journals we surveyed are perceived by accounting academics as incorporating research from more than one paradigm. It is argued that this ‘catholic’ approach by journal editors and the willingness of many respondents in our surveys to score journals highly on material they publish from both paradigm categories reflects a balanced acceptance of the multi-paradigmatic state of accounting research. Our analysis is set within an understanding of systems of accounting knowledge production as socially constructed and as playing an important role in the distribution of power and reward in the academy. We explore the impact of our results on concerns emerging from the work of a number of authors who carefully expose localised 'elites'. The possibilities for a closer relationship between research emerging from a multi-paradigm discipline and policy setting and practice are also discussed. The analysis provides a sense of optimism that the broad constituency of accounting academics operates within an environment conducive for the exchange of ideas. That optimism is dampened by concerns about the impact of local 'elites' and the need for more research on their impact on accounting academe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes a novel connectionist machine utilizing induction by a Hilbert hypercube representation. This representation offers a number of distinct advantages which are described. We construct a theoretical and practical learning machine which lies in an area of overlap between three disciplines - neural nets, machine learning and knowledge acquisition - hence it is refered to as a "coalesced" machine. To this unifying aspect is added the various advantages of its orthogonal lattice structure as against less structured nets. We discuss the case for such a fundamental and low level empirical learning tool and the assumptions behind the machine are clearly outlined. Our theory of an orthogonal lattice structure the Hilbert hypercube of an n-dimensional space using a complemented distributed lattice as a basis for supervised learning is derived from first principles on clearly laid out scientific principles. The resulting "subhypercube theory" was implemented in a development machine which was then used to test the theoretical predictions again under strict scientific guidelines. The scope, advantages and limitations of this machine were tested in a series of experiments. Novel and seminal properties of the machine include: the "metrical", deterministic and global nature of its search; complete convergence invariably producing minimum polynomial solutions for both disjuncts and conjuncts even with moderate levels of noise present; a learning engine which is mathematically analysable in depth based upon the "complexity range" of the function concerned; a strong bias towards the simplest possible globally (rather than locally) derived "balanced" explanation of the data; the ability to cope with variables in the network; and new ways of reducing the exponential explosion. Performance issues were addressed and comparative studies with other learning machines indicates that our novel approach has definite value and should be further researched.