8 resultados para Knowledge Representations and Controlled Vocabularies in Water Science
em Aston University Research Archive
Resumo:
Background: Government policy and national practice guidelines have created an increasing need for autism services to adopt an evidence-based practice approach. However, a gap continues to exist between research evidence and its application. This study investigated the difference between autism researchers and practitioners in their methods of acquiring knowledge. Methods: In a questionnaire study, 261 practitioners and 422 researchers reported on the methods they use and perceive to be beneficial for increasing research access and knowledge. They also reported on their level of engagement with members of the other professional community. Results: Researchers and practitioners reported different methods used to access information. Each group, however, had similar overall priorities regarding access to research information. While researchers endorsed the use of academic journals significantly more often than practitioners, both groups included academic journals in their top three choices. The groups differed in the levels of engagement they reported; researchers indicated they were more engaged with practitioners than vice versa. Conclusions: Comparison of researcher and practitioner preferences led to several recommendations to improve knowledge sharing and translation, including enhancing access to original research publications, facilitating informal networking opportunities and the development of proposals for the inclusion of practitioners throughout the research process.
Resumo:
The base free oxidation of glycerol with molecular oxygen in water using bimetallic Au-Pt catalysts on three different acidic zeolite supports (H-mordenite, H-β and H-USY) was explored in a batch setup. At temperatures between 140 and 180 °C, lactic acid formation was significant and highest selectivity (60 % lactic acid at 80 % glycerol conversion) was obtained using Au-Pt/USY-600 (180 °C). A selectivity switch to glyceric acid (GLYA) was observed when the reactions were performed at 100 °C. Highest conversion and selectivity towards GLYA were obtained with Au-Pt/H-β as the catalyst (68 % selectivity at 68 % conversion).
Resumo:
A multi-chromosome GA (Multi-GA) was developed, based upon concepts from the natural world, allowing improved flexibility in a number of areas including representation, genetic operators, their parameter rates and real world multi-dimensional applications. A series of experiments were conducted, comparing the performance of the Multi-GA to a traditional GA on a number of recognised and increasingly complex test optimisation surfaces, with promising results. Further experiments demonstrated the Multi-GA's flexibility through the use of non-binary chromosome representations and its applicability to dynamic parameterisation. A number of alternative and new methods of dynamic parameterisation were investigated, in addition to a new non-binary 'Quotient crossover' mechanism. Finally, the Multi-GA was applied to two real world problems, demonstrating its ability to handle mixed type chromosomes within an individual, the limited use of a chromosome level fitness function, the introduction of new genetic operators for structural self-adaptation and its viability as a serious real world analysis tool. The first problem involved optimum placement of computers within a building, allowing the Multi-GA to use multiple chromosomes with different type representations and different operators in a single individual. The second problem, commonly associated with Geographical Information Systems (GIS), required a spatial analysis location of the optimum number and distribution of retail sites over two different population grids. In applying the Multi-GA, two new genetic operators (addition and deletion) were developed and explored, resulting in the definition of a mechanism for self-modification of genetic material within the Multi-GA structure and a study of this behaviour.
Resumo:
This article takes the perspective that risk knowledge and the activities related to RM practice can benefit from the implementation of KM processes and systems, to produce a better enterprise wide implementation of risk management. Both in the information systems discipline and elsewhere, there has been a trend towards greater integration and consolidation in the management of organizations. Some examples of this are: Enterprise Resource Planning (Stevens, 2003), Enterprise Architecture (Zachmann, 1996) and Enterprise Content Management (Smith & McKeen, 2003). Similarly, risk management is evolving into Enterprise Risk Management. KM’s importance in breaking down silos within an organization can help it to do so.
Resumo:
The assertion about the peculiarly intricate and complex character of social phenomena has, in much of social discourse, a virtually uncontested tradition. A significant part of the premise about the complexity of social phenomena is the conviction that it complicates, perhaps even inhibits the development and application of social scientific knowledge. Our paper explores the origins, the basis and the consequences of this assertion and asks in particular whether the classic complexity assertion still deserves to be invoked in analyses that ask about the production and the utilization of social scientific knowledge in modern society. We refer to one of the most prominent and politically influential social scientific theories, John Maynard Keynes' economic theory as an illustration. We conclude that, the practical value of social scientific knowledge is not necessarily dependent on a faithful, in the sense of complete, representation of (complex) social reality. Practical knowledge is context sensitive if not project bound. Social scientific knowledge that wants to optimize its practicality has to attend and attach itself to elements of practical social situations that can be altered or are actionable by relevant actors. This chapter represents an effort to re-examine the relation between social reality, social scientific knowledge and its practical application. There is a widely accepted view about the potential social utility of social scientific knowledge that invokes the peculiar complexity of social reality as an impediment to good theoretical comprehension and hence to its applicability.
Resumo:
The investigation of insulation debris generation, transport and sedimentation becomes more important with regard to reactor safety research for pressurized and boiling water reactors, when considering the long-term behaviour of emergency core coolant systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of a disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb or impinge on the emergency core cooling systems. Open questions of generic interest are for example the particle load on strainers and corresponding pressure-drop, the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Science Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation and the development of computational fluid dynamic (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the present paper, the basic concepts for computational fluid dynamic (CFD) modelling are described and experimental results are presented. Further experiments are designed and feasibility studies were performed.
Resumo:
This study presents water flow (WF) into soil from several pitchers buried in the soil up to their neck and filled with water,under natural atmospheric conditions for a period of two years. Variation in daily WF into soil indicated a direct correlation with moisture deficit (MD) in atmosphere. WF increases linearly with MD for non rainy days. WF without hydraulic head through all pots varied in the order air>soil>water. Base line flow in water with respect to air was < 5%. WF for pots with hydraulic head was also in the order air>soil>water, but with significant increase in WF. Hydraulic conductivity Ks was in the order air>soil>water.Ks in water was independent of MD, whereas for air and soil, Ks increased with MD. Thus total WF is partially under hydraulic head and partly due to pull effect through capillary pores on pot wall either due to MD in air or prevailing soil water tension in soil.