4 resultados para Knowledge Database
em Aston University Research Archive
Resumo:
Computer-Based Learning systems of one sort or another have been in existence for almost 20 years, but they have yet to achieve real credibility within Commerce, Industry or Education. A variety of reasons could be postulated for this, typically: - cost - complexity - inefficiency - inflexibility - tedium Obviously different systems deserve different levels and types of criticism, but it still remains true that Computer-Based Learning (CBL) is falling significantly short of its potential. Experience of a small, but highly successful CBL system within a large, geographically distributed industry (the National Coal Board) prompted an investigation into currently available packages, the original intention being to purchase the most suitable software and run it on existing computer hardware, alongside existing software systems. It became apparent that none of the available CBL packages were suitable, and a decision was taken to develop an in-house Computer-Assisted Instruction system according to the following criteria: - cheap to run; - easy to author course material; - easy to use; - requires no computing knowledge to use (as either an author or student) ; - efficient in the use of computer resources; - has a comprehensive range of facilities at all levels. This thesis describes the initial investigation, resultant observations and the design, development and implementation of the SCHOOL system. One of the principal characteristics c£ SCHOOL is that it uses a hierarchical database structure for the storage of course material - thereby providing inherently a great deal of the power, flexibility and efficiency originally required. Trials using the SCHOOL system on IBM 303X series equipment are also detailed, along with proposed and current development work on what is essentially an operational CBL system within a large-scale Industrial environment.
Resumo:
The work described was carried out as part of a collaborative Alvey software engineering project (project number SE057). The project collaborators were the Inter-Disciplinary Higher Degrees Scheme of the University of Aston in Birmingham, BIS Applied Systems Ltd. (BIS) and the British Steel Corporation. The aim of the project was to investigate the potential application of knowledge-based systems (KBSs) to the design of commercial data processing (DP) systems. The work was primarily concerned with BIS's Structured Systems Design (SSD) methodology for DP systems development and how users of this methodology could be supported using KBS tools. The problems encountered by users of SSD are discussed and potential forms of computer-based support for inexpert designers are identified. The architecture for a support environment for SSD is proposed based on the integration of KBS and non-KBS tools for individual design tasks within SSD - The Intellipse system. The Intellipse system has two modes of operation - Advisor and Designer. The design, implementation and user-evaluation of Advisor are discussed. The results of a Designer feasibility study, the aim of which was to analyse major design tasks in SSD to assess their suitability for KBS support, are reported. The potential role of KBS tools in the domain of database design is discussed. The project involved extensive knowledge engineering sessions with expert DP systems designers. Some practical lessons in relation to KBS development are derived from this experience. The nature of the expertise possessed by expert designers is discussed. The need for operational KBSs to be built to the same standards as other commercial and industrial software is identified. A comparison between current KBS and conventional DP systems development is made. On the basis of this analysis, a structured development method for KBSs in proposed - the POLITE model. Some initial results of applying this method to KBS development are discussed. Several areas for further research and development are identified.
Resumo:
To date, more than 16 million citations of published articles in biomedical domain are available in the MEDLINE database. These articles describe the new discoveries which accompany a tremendous development in biomedicine during the last decade. It is crucial for biomedical researchers to retrieve and mine some specific knowledge from the huge quantity of published articles with high efficiency. Researchers have been engaged in the development of text mining tools to find knowledge such as protein-protein interactions, which are most relevant and useful for specific analysis tasks. This chapter provides a road map to the various information extraction methods in biomedical domain, such as protein name recognition and discovery of protein-protein interactions. Disciplines involved in analyzing and processing unstructured-text are summarized. Current work in biomedical information extracting is categorized. Challenges in the field are also presented and possible solutions are discussed.
Resumo:
This thesis addressed the problem of risk analysis in mental healthcare, with respect to the GRiST project at Aston University. That project provides a risk-screening tool based on the knowledge of 46 experts, captured as mind maps that describe relationships between risks and patterns of behavioural cues. Mind mapping, though, fails to impose control over content, and is not considered to formally represent knowledge. In contrast, this thesis treated GRiSTs mind maps as a rich knowledge base in need of refinement; that process drew on existing techniques for designing databases and knowledge bases. Identifying well-defined mind map concepts, though, was hindered by spelling mistakes, and by ambiguity and lack of coverage in the tools used for researching words. A novel use of the Edit Distance overcame those problems, by assessing similarities between mind map texts, and between spelling mistakes and suggested corrections. That algorithm further identified stems, the shortest text string found in related word-forms. As opposed to existing approaches’ reliance on built-in linguistic knowledge, this thesis devised a novel, more flexible text-based technique. An additional tool, Correspondence Analysis, found patterns in word usage that allowed machines to determine likely intended meanings for ambiguous words. Correspondence Analysis further produced clusters of related concepts, which in turn drove the automatic generation of novel mind maps. Such maps underpinned adjuncts to the mind mapping software used by GRiST; one such new facility generated novel mind maps, to reflect the collected expert knowledge on any specified concept. Mind maps from GRiST are stored as XML, which suggested storing them in an XML database. In fact, the entire approach here is ”XML-centric”, in that all stages rely on XML as far as possible. A XML-based query language allows user to retrieve information from the mind map knowledge base. The approach, it was concluded, will prove valuable to mind mapping in general, and to detecting patterns in any type of digital information.