51 resultados para Kir3 channels
em Aston University Research Archive
Resumo:
The effects of extracellular application of arginine vasopressin (AVP) upon membrane currents in L6 skeletal myocytes was investigated using the whole-cell configuration of the patch-clamp technique. At O mV AVP produced large amplitude, transient outward currents that reversed when the clamping potential was changed to -100 mV (negative to EK) The effects of alterations in the extracellular K+ concentration upon the current reversal potential suggested that the current elicited by AVP was carried mainly by K+ ions. Intracellular dialysis with 10 μM inositol 1,4,5-trisphosphate (InsP3) elicited similar currents but only in 6/14 cells. Inclusion of 5 mg ml-1 heparin in the intracellular solutions was ineffective at inhibiting the current responses to AVP. The AVP-induced current was totally abolished when the intracellular EGTA concentration was increased from 0.05 mM to 10 mM or Ca2+ was removed from the extracellular perfusing solution. These results suggest that AVP produces activation of a Ca2+-sensitive K+ conductance in L6 skeletal myocytes by a process dependent upon extracellular Ca2+ and not intracellular Ca2+ release. © 1995 Academic Press. All rights reserved.
Resumo:
The efficacy of a specially constructed Gallager-type error-correcting code to communication in a Gaussian channel is examined. The construction is based on the introduction of complex matrices, used in both encoding and decoding, which comprise sub-matrices of cascading connection values. The finite-size effects are estimated for comparing the results with the bounds set by Shannon. The critical noise level achieved for certain code rates and infinitely large systems nearly saturates the bounds set by Shannon even when the connectivity used is low.
Resumo:
Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.
Resumo:
Using the magnetization enumerator method, we evaluate the practical and theoretical limitations of symmetric channels with real outputs. Results are presented for several regular Gallager code constructions.
Resumo:
We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.
Resumo:
Electronic information tools have become increasingly popular with channel manufacturers in their efforts to manage resellers. Although these tools have been found to increase the efficiency of communications, researchers and practitioners alike have questioned their effectiveness. To investigate how top-down electronic information affects social channel relationships we consider the use of such tools in information technology distribution channels. Using electronic communications theory and channel governance theory we hypothesize that the usefulness of the tools is a function of the type of information inherent in each tool (demand creation information or supply fulfillment information) and the particular communications characteristics of this information.
Resumo:
Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under low-density parity-check (LDPC) network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and symmetric and asymmetric interference. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases. © 2007 IOP Publishing Ltd.
Resumo:
This study examines how the institutional environment of transitional economies impacts institutional arrangements in the form of influence strategies employed by Western exporters in managing relationships with local firms. Reflecting environmental components, a Western firm’s understanding of Eastern Europe’s regulatory volatility, foreignness, and partner’s control locus is posited to impact economic performance by affecting key coercive and non-coercive influence strategies. A model specifying the effects of the institutional environment on economic outcomes is developed and tested on data from US exporters to Eastern Europe. A structural equation analysis indicates institutional components have a differential impact on the influence strategies employed by these Western firms and on export performance. In particular, use of coercive legalistic pleas is increased by regulatory volatility but reduced by perceived foreignness while use of non-coercive recommendations is increased by the partner’s external locus of control but not by perceived foreignness. Importantly, the institutional environment’s impact on economic performance is shown to be direct as well as indirect through the influence strategies Western firms employ in Eastern Europe. The study concludes with a discussion of implications for managers and researchers.
Resumo:
Previous conceptualizations of attitudinal commitment are extended by considering two very different components of a manufacturer’s attachment to an independent channel intermediary. Relying on commitment theory, a model is developed that describes how attitudinal commitment may reside in either the instrumental or the social strain of a manufacturer’s relationship with its distributor. For each strain, the developmental role played by key facets of the channel setting—relative dependence, pledges, and trust—are shown. Furthermore, the nature of the attachment bond is posited to motivate very different governance mechanisms as the distribution agreement is enforced by either social or contractual means. Empirical support for the model demonstrates that an expanded view of attitudinal commitment is important in understanding the complex nature of attachment in channel relationships.
Resumo:
Visual detection performance (d') is usually an accelerating function of stimulus contrast, which could imply a smooth, threshold-like nonlinearity in the sensory response. Alternatively, Pelli (1985 Journal of the Optical Society of America A 2 1508 - 1532) developed the 'uncertainty model' in which responses were linear with contrast, but the observer was uncertain about which of many noisy channels contained the signal. Such internal uncertainty effectively adds noise to weak signals, and predicts the nonlinear psychometric function. We re-examined these ideas by plotting psychometric functions (as z-scores) for two observers (SAW, PRM) with high precision. The task was to detect a single, vertical, blurred line at the fixation point, or identify its polarity (light vs dark). Detection of a known polarity was nearly linear for SAW but very nonlinear for PRM. Randomly interleaving light and dark trials reduced performance and rendered it non-linear for SAW, but had little effect for PRM. This occurred for both single-interval and 2AFC procedures. The whole pattern of results was well predicted by our Monte Carlo simulation of Pelli's model, with only two free parameters. SAW (highly practised) had very low uncertainty. PRM (with little prior practice) had much greater uncertainty, resulting in lower contrast sensitivity, nonlinear performance, and no effect of external (polarity) uncertainty. For SAW, identification was about v2 better than detection, implying statistically independent channels for stimuli of opposite polarity, rather than an opponent (light - dark) channel. These findings strongly suggest that noise and uncertainty, rather than sensory nonlinearity, limit visual detection.
Resumo:
How does the brain combine spatio-temporal signals from the two eyes? We quantified binocular summation as the improvement in 2AFC contrast sensitivity for flickering gratings seen by two eyes compared with one. Binocular gratings in-phase showed sensitivity up to 1.8 times higher, suggesting nearly linear summation of contrasts. The binocular advantage decreased to 1.4 at lower spatial and higher temporal frequencies (0.25 cycle deg-1, 30 Hz). Dichoptic, antiphase gratings showed only a small binocular advantage, by a factor of 1.1 to 1.2, but no evidence of cancellation. We present a signal-processing model to account for the contrast-sensitivity functions and the pattern of binocular summation. It has linear sustained and transient temporal filters, nonlinear transduction, and half-wave rectification that creates ON and OFF channels. Binocular summation occurs separately within ON and OFF channels, thus explaining the phase-specific binocular advantage. The model also accounts for earlier findings on detection of brief antiphase flashes and the surprising finding that dichoptic antiphase flicker is seen as frequency-doubled (Cavonius et al, 1992 Ophthalmic and Physiological Optics 12 153 - 156). [Supported by EPSRC project GR/S74515/01].
Resumo:
We outline a scheme for the way in which early vision may handle information about shading (luminance modulation, LM) and texture (contrast modulation, CM). Previous work on the detection of gratings has found no sub-threshold summation, and no cross-adaptation, between LM and CM patterns. This strongly implied separate channels for the detection of LM and CM structure. However, we now report experiments in which adapting to LM (or CM) gratings creates tilt aftereffects of similar magnitude on both LM and CM test gratings, and reduces the perceived strength (modulation depth) of LM and CM gratings to a similar extent. This transfer of aftereffects between LM and CM might suggest a second stage of processing at which LM and CM information is integrated. The nature of this integration, however, is unclear and several simple predictions are not fulfilled. Firstly, one might expect the integration stage to lose identity information about whether the pattern was LM or CM. We show instead that the identity of barely detectable LM and CM patterns is not lost. Secondly, when LM and CM gratings are combined in-phase or out-of-phase we find no evidence for cancellation, nor for 'phase-blindness'. These results suggest that information about LM and CM is not pooled or merged - shading is not confused with texture variation. We suggest that LM and CM signals are carried by separate channels, but they share a common adaptation mechanism that accounts for the almost complete transfer of perceptual aftereffects.
Resumo:
Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are expressed postsynaptically in the rodent globus pallidus (GP), where they play several important roles in controlling GP neuronal activity. To further elucidate the role of HCN channels in the GP, immunocytochemical and electrophysiological approaches were used to test the hypothesis that HCN channels are also expressed presynaptically on the local axon collaterals of GP neurons. At the electron microscopic level, immunoperoxidase labelling for HCN1 and HCN2 was localized in GP somata and dendritic processes, myelinated and unmyelinated axons, and axon terminals. One population of labelled terminals formed symmetric synapses with somata and proximal dendrites and were immunoreactive for parvalbumin, consistent with the axon collaterals of GABAergic GP projection neurons. In addition, labelling for HCN2 and, to a lesser degree, HCN1 was observed in axon terminals that formed asymmetric synapses and were immunoreactive for the vesicular glutamate transporter 2. Immunogold labelling demonstrated that HCN1 and HCN2 were located predominantly at extrasynaptic sites along the plasma membrane of both types of terminal. To determine the function of presynaptic HCN channels in the GP, we performed whole-cell recordings from GP neurons in vitro. Bath application of the HCN channel blocker ZD7288 resulted in an increase in the frequency of mIPSCs but had no effect on their amplitude, implying that HCN channels tonically regulate the release of GABA. Their presence, and predicted role in modulating transmitter release, represents a hitherto unidentified mechanism whereby HCN channels influence the activity of GP neurons. © The Authors (2007).