1 resultado para Ki-67

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Celiac disease is an autoimmune-mediated enteropathy characterized by adaptive and innate immune responses to dietary gluten in wheat, rye and barley in genetically susceptible individuals. Gluten-derived gliadin peptides are deamidated by transglutaminase 2 (TG2), leading to an immune response in the small-intestinal mucosa. TG2 inhibitors have therefore been suggested as putative drugs for celiac disease. In this proof-of-concept study we investigated whether two TG2 inhibitors, cell-impermeable R281 and cell-permeable R283, can prevent the toxic effects of gliadin in vitro and ex vivo. Methods Intestinal epithelial Caco-2 cells were treated with peptic-tryptic-digested gliadin (PT-gliadin) with or without TG2 inhibitors and thereafter direct toxic effects (transepithelial resistance, cytoskeletal rearrangement, junction protein expression and phoshorylation of extracellular-signal-regulated kinase 1/2) were determined. In an organ culture of celiacpatient- derived small-intestinal biopsies we measured secretion of TG2-autoantibodies into the culture medium and the densities of CD25- and interleukin (IL) 15-positive cells, forkhead box P3 (FOXP3)-positive regulatory Tcells (Tregs) and Ki-67- positive proliferating crypt cells. Results Both TG2 inhibitors evinced protective effects against gliadin-induced detrimental effects in Caco-2 cells but the cellimpermeableR281seemedslightlymorepotent. Inaddition,TG2 inhibitor R281 modified the gluten-induced increase in CD25- and IL15-positive cells,Tregs and crypt cell proliferation, but had no effect on antibody secretion in celiac-patient-derived biopsies. Conclusions Our results suggest that TG2 inhibitors are able to reduce certain gliadin-induced effects related to responses in vitro and ex vivo. © Springer Science+Business Media, LLC 2012.