8 resultados para Key cutting algorithm

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Measurement and variation control of geometrical Key Characteristics (KCs), such as flatness and gap of joint faces, coaxiality of cabin sections, is the crucial issue in large components assembly from the aerospace industry. Aiming to control geometrical KCs and to attain the best fit of posture, an optimization algorithm based on KCs for large components assembly is proposed. This approach regards the posture best fit, which is a key activity in Measurement Aided Assembly (MAA), as a two-phase optimal problem. In the first phase, the global measurement coordinate system of digital model and shop floor is unified with minimum error based on singular value decomposition, and the current posture of components being assembly is optimally solved in terms of minimum variation of all reference points. In the second phase, the best posture of the movable component is optimally determined by minimizing multiple KCs' variation with the constraints that every KC respectively conforms to its product specification. The optimal models and the process procedures for these two-phase optimal problems based on Particle Swarm Optimization (PSO) are proposed. In each model, every posture to be calculated is modeled as a 6 dimensional particle (three movement and three rotation parameters). Finally, an example that two cabin sections of satellite mainframe structure are being assembled is selected to verify the effectiveness of the proposed approach, models and algorithms. The experiment result shows the approach is promising and will provide a foundation for further study and application. © 2013 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Generative Topographic Mapping (GTM) algorithm of Bishop et al. (1997) has been introduced as a principled alternative to the Self-Organizing Map (SOM). As well as avoiding a number of deficiencies in the SOM, the GTM algorithm has the key property that the smoothness properties of the model are decoupled from the reference vectors, and are described by a continuous mapping from a lower-dimensional latent space into the data space. Magnification factors, which are approximated by the difference between code-book vectors in SOMs, can therefore be evaluated for the GTM model as continuous functions of the latent variables using the techniques of differential geometry. They play an important role in data visualization by highlighting the boundaries between data clusters, and are illustrated here for both a toy data set, and a problem involving the identification of crab species from morphological data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the security of a specific class of common watermarking methods based on Dither modulation-quantisation index modulation (DM-QIM) and focusing on watermark-only attacks (WOA). The vulnerabilities of and probable attacks on lattice structure based watermark embedding methods have been presented in the literature. DM-QIM is one of the best known lattice structure based watermarking techniques. In this paper, the authors discuss a watermark-only attack scenario (the attacker has access to a single watermarked content only). In the literature it is an assumption that DM-QIM methods are secure to WOA. However, the authors show that the DM-QIM based embedding method is vulnerable against a guided key guessing attack by exploiting subtle statistical regularities in the feature space embeddings for time series and images. Using a distribution-free algorithm, this paper presents an analysis of the attack and numerical results for multiple examples of image and time series data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the security of a specific class of common watermarking methods based on Dither modulation-quantisation index modulation (DM-QIM) and focusing on watermark-only attacks (WOA). The vulnerabilities of and probable attacks on lattice structure based watermark embedding methods have been presented in the literature. DM-QIM is one of the best known lattice structure based watermarking techniques. In this paper, the authors discuss a watermark-only attack scenario (the attacker has access to a single watermarked content only). In the literature it is an assumption that DM-QIM methods are secure to WOA. However, the authors show that the DM-QIM based embedding method is vulnerable against a guided key guessing attack by exploiting subtle statistical regularities in the feature space embeddings for time series and images. Using a distribution-free algorithm, this paper presents an analysis of the attack and numerical results for multiple examples of image and time series data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key problem with IEEE 802.11 technology is adaptation of the transmission rates to the changing channel conditions, which is more challenging in vehicular networks. Although rate adaptation problem has been extensively studied for static residential and enterprise network scenarios, there is little work dedicated to the IEEE 802.11 rate adaptation in vehicular networks. Here, the authors are motivated to study the IEEE 802.11 rate adaptation problem in infrastructure-based vehicular networks. First of all, the performances of several existing rate adaptation algorithms under vehicle network scenarios, which have been widely used for static network scenarios, are evaluated. Then, a new rate adaptation algorithm is proposed to improve the network performance. In the new rate adaptation algorithm, the technique of sampling candidate transmission modes is used, and the effective throughput associated with a transmission mode is the metric used to choose among the possible transmission modes. The proposed algorithm is compared to several existing rate adaptation algorithms by simulations, which shows significant performance improvement under various system and channel configurations. An ideal signal-to-noise ratio (SNR)-based rate adaptation algorithm in which accurate channel SNR is assumed to be always available is also implemented for benchmark performance comparison.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ant Colony Optimisation algorithms mimic the way ants use pheromones for marking paths to important locations. Pheromone traces are followed and reinforced by other ants, but also evaporate over time. As a consequence, optimal paths attract more pheromone, whilst the less useful paths fade away. In the Multiple Pheromone Ant Clustering Algorithm (MPACA), ants detect features of objects represented as nodes within graph space. Each node has one or more ants assigned to each feature. Ants attempt to locate nodes with matching feature values, depositing pheromone traces on the way. This use of multiple pheromone values is a key innovation. Ants record other ant encounters, keeping a record of the features and colony membership of ants. The recorded values determine when ants should combine their features to look for conjunctions and whether they should merge into colonies. This ability to detect and deposit pheromone representative of feature combinations, and the resulting colony formation, renders the algorithm a powerful clustering tool. The MPACA operates as follows: (i) initially each node has ants assigned to each feature; (ii) ants roam the graph space searching for nodes with matching features; (iii) when departing matching nodes, ants deposit pheromones to inform other ants that the path goes to a node with the associated feature values; (iv) ant feature encounters are counted each time an ant arrives at a node; (v) if the feature encounters exceed a threshold value, feature combination occurs; (vi) a similar mechanism is used for colony merging. The model varies from traditional ACO in that: (i) a modified pheromone-driven movement mechanism is used; (ii) ants learn feature combinations and deposit multiple pheromone scents accordingly; (iii) ants merge into colonies, the basis of cluster formation. The MPACA is evaluated over synthetic and real-world datasets and its performance compares favourably with alternative approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High precision manufacturers continuously seek out disruptive technologies to improve the quality, cost, and delivery of their products. With the advancement of machine tool and measurement technology many companies are ready to capitalise on the opportunity of on-machine measurement (OMM). Coupled with business case, manufacturing engineers are now questioning whether OMM can soon eliminate the need for post-process inspection systems. Metrologists will however argue that the machining environment is too hostile and that there are numerous process variables which need consideration before traceable measurement on-the-machine can be achieved. In this paper we test the measurement capability of five new multi-axis machine tools enabled as OMM systems via on-machine probing. All systems are tested under various operating conditions in order to better understand the effects of potentially significant variables. This investigation has found that key process variables such as machine tool warm-up and tool-change cycles can have an effect on machine tool measurement repeatability. New data presented here is important to many manufacturers whom are considering utilising their high precision multi-axis machine tools for both the creation and verification of their products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-orthogonal multiple access (NOMA) is emerging as a promising multiple access technology for the fifth generation cellular networks to address the fast growing mobile data traffic. It applies superposition coding in transmitters, allowing simultaneous allocation of the same frequency resource to multiple intra-cell users. Successive interference cancellation is used at the receivers to cancel intra-cell interference. User pairing and power allocation (UPPA) is a key design aspect of NOMA. Existing UPPA algorithms are mainly based on exhaustive search method with extensive computation complexity, which can severely affect the NOMA performance. A fast proportional fairness (PF) scheduling based UPPA algorithm is proposed to address the problem. The novel idea is to form user pairs around the users with the highest PF metrics with pre-configured fixed power allocation. Systemlevel simulation results show that the proposed algorithm is significantly faster (seven times faster for the scenario with 20 users) with a negligible throughput loss than the existing exhaustive search algorithm.