3 resultados para Kaasalainen, Nestor
em Aston University Research Archive
Resumo:
We propose and analyze two different Bayesian online algorithms for learning in discrete Hidden Markov Models and compare their performance with the already known Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of generalization we draw learning curves in simplified situations for these algorithms and compare their performances.
Resumo:
We present and analyze three different online algorithms for learning in discrete Hidden Markov Models (HMMs) and compare their performance with the Baldi-Chauvin Algorithm. Using the Kullback-Leibler divergence as a measure of the generalization error we draw learning curves in simplified situations and compare the results. The performance for learning drifting concepts of one of the presented algorithms is analyzed and compared with the Baldi-Chauvin algorithm in the same situations. A brief discussion about learning and symmetry breaking based on our results is also presented. © 2006 American Institute of Physics.
Resumo:
Bayesian algorithms pose a limit to the performance learning algorithms can achieve. Natural selection should guide the evolution of information processing systems towards those limits. What can we learn from this evolution and what properties do the intermediate stages have? While this question is too general to permit any answer, progress can be made by restricting the class of information processing systems under study. We present analytical and numerical results for the evolution of on-line algorithms for learning from examples for neural network classifiers, which might include or not a hidden layer. The analytical results are obtained by solving a variational problem to determine the learning algorithm that leads to maximum generalization ability. Simulations using evolutionary programming, for programs that implement learning algorithms, confirm and expand the results. The principal result is not just that the evolution is towards a Bayesian limit. Indeed it is essentially reached. In addition we find that evolution is driven by the discovery of useful structures or combinations of variables and operators. In different runs the temporal order of the discovery of such combinations is unique. The main result is that combinations that signal the surprise brought by an example arise always before combinations that serve to gauge the performance of the learning algorithm. This latter structures can be used to implement annealing schedules. The temporal ordering can be understood analytically as well by doing the functional optimization in restricted functional spaces. We also show that there is data suggesting that the appearance of these traits also follows the same temporal ordering in biological systems. © 2006 American Institute of Physics.