13 resultados para Iterative closest point algorithm
em Aston University Research Archive
Resumo:
Motivation: The immunogenicity of peptides depends on their ability to bind to MHC molecules. MHC binding affinity prediction methods can save significant amounts of experimental work. The class II MHC binding site is open at both ends, making epitope prediction difficult because of the multiple binding ability of long peptides. Results: An iterative self-consistent partial least squares (PLS)-based additive method was applied to a set of 66 pep- tides no longer than 16 amino acids, binding to DRB1*0401. A regression equation containing the quantitative contributions of the amino acids at each of the nine positions was generated. Its predictability was tested using two external test sets which gave r pred =0.593 and r pred=0.655, respectively. Furthermore, it was benchmarked using 25 known T-cell epitopes restricted by DRB1*0401 and we compared our results with four other online predictive methods. The additive method showed the best result finding 24 of the 25 T-cell epitopes. Availability: Peptides used in the study are available from http://www.jenner.ac.uk/JenPep. The PLS method is available commercially in the SYBYL molecular modelling software package. The final model for affinity prediction of peptides binding to DRB1*0401 molecule is available at http://www.jenner.ac.uk/MHCPred. Models developed for DRB1*0101 and DRB1*0701 also are available in MHC- Pred
Resumo:
In order to survive in the increasingly customer-oriented marketplace, continuous quality improvement marks the fastest growing quality organization’s success. In recent years, attention has been focused on intelligent systems which have shown great promise in supporting quality control. However, only a small number of the currently used systems are reported to be operating effectively because they are designed to maintain a quality level within the specified process, rather than to focus on cooperation within the production workflow. This paper proposes an intelligent system with a newly designed algorithm and the universal process data exchange standard to overcome the challenges of demanding customers who seek high-quality and low-cost products. The intelligent quality management system is equipped with the ‘‘distributed process mining” feature to provide all levels of employees with the ability to understand the relationships between processes, especially when any aspect of the process is going to degrade or fail. An example of generalized fuzzy association rules are applied in manufacturing sector to demonstrate how the proposed iterative process mining algorithm finds the relationships between distributed process parameters and the presence of quality problems.
Resumo:
We investigate two numerical procedures for the Cauchy problem in linear elasticity, involving the relaxation of either the given boundary displacements (Dirichlet data) or the prescribed boundary tractions (Neumann data) on the over-specified boundary, in the alternating iterative algorithm of Kozlov et al. (1991). The two mixed direct (well-posed) problems associated with each iteration are solved using the method of fundamental solutions (MFS), in conjunction with the Tikhonov regularization method, while the optimal value of the regularization parameter is chosen via the generalized cross-validation (GCV) criterion. An efficient regularizing stopping criterion which ceases the iterative procedure at the point where the accumulation of noise becomes dominant and the errors in predicting the exact solutions increase, is also presented. The MFS-based iterative algorithms with relaxation are tested for Cauchy problems for isotropic linear elastic materials in various geometries to confirm the numerical convergence, stability, accuracy and computational efficiency of the proposed method.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.
Resumo:
Motivation: In any macromolecular polyprotic system - for example protein, DNA or RNA - the isoelectric point - commonly referred to as the pI - can be defined as the point of singularity in a titration curve, corresponding to the solution pH value at which the net overall surface charge - and thus the electrophoretic mobility - of the ampholyte sums to zero. Different modern analytical biochemistry and proteomics methods depend on the isoelectric point as a principal feature for protein and peptide characterization. Protein separation by isoelectric point is a critical part of 2-D gel electrophoresis, a key precursor of proteomics, where discrete spots can be digested in-gel, and proteins subsequently identified by analytical mass spectrometry. Peptide fractionation according to their pI is also widely used in current proteomics sample preparation procedures previous to the LC-MS/MS analysis. Therefore accurate theoretical prediction of pI would expedite such analysis. While such pI calculation is widely used, it remains largely untested, motivating our efforts to benchmark pI prediction methods. Results: Using data from the database PIP-DB and one publically available dataset as our reference gold standard, we have undertaken the benchmarking of pI calculation methods. We find that methods vary in their accuracy and are highly sensitive to the choice of basis set. The machine-learning algorithms, especially the SVM-based algorithm, showed a superior performance when studying peptide mixtures. In general, learning-based pI prediction methods (such as Cofactor, SVM and Branca) require a large training dataset and their resulting performance will strongly depend of the quality of that data. In contrast with Iterative methods, machine-learning algorithms have the advantage of being able to add new features to improve the accuracy of prediction. Contact: yperez@ebi.ac.uk Availability and Implementation: The software and data are freely available at https://github.com/ypriverol/pIR. Supplementary information: Supplementary data are available at Bioinformatics online.
Resumo:
In recent years there has been an increased interest in applying non-parametric methods to real-world problems. Significant research has been devoted to Gaussian processes (GPs) due to their increased flexibility when compared with parametric models. These methods use Bayesian learning, which generally leads to analytically intractable posteriors. This thesis proposes a two-step solution to construct a probabilistic approximation to the posterior. In the first step we adapt the Bayesian online learning to GPs: the final approximation to the posterior is the result of propagating the first and second moments of intermediate posteriors obtained by combining a new example with the previous approximation. The propagation of em functional forms is solved by showing the existence of a parametrisation to posterior moments that uses combinations of the kernel function at the training points, transforming the Bayesian online learning of functions into a parametric formulation. The drawback is the prohibitive quadratic scaling of the number of parameters with the size of the data, making the method inapplicable to large datasets. The second step solves the problem of the exploding parameter size and makes GPs applicable to arbitrarily large datasets. The approximation is based on a measure of distance between two GPs, the KL-divergence between GPs. This second approximation is with a constrained GP in which only a small subset of the whole training dataset is used to represent the GP. This subset is called the em Basis Vector, or BV set and the resulting GP is a sparse approximation to the true posterior. As this sparsity is based on the KL-minimisation, it is probabilistic and independent of the way the posterior approximation from the first step is obtained. We combine the sparse approximation with an extension to the Bayesian online algorithm that allows multiple iterations for each input and thus approximating a batch solution. The resulting sparse learning algorithm is a generic one: for different problems we only change the likelihood. The algorithm is applied to a variety of problems and we examine its performance both on more classical regression and classification tasks and to the data-assimilation and a simple density estimation problems.
Resumo:
The global market has become increasingly dynamic, unpredictable and customer-driven. This has led to rising rates of new product introduction and turbulent demand patterns across product mixes. As a result, manufacturing enterprises were facing mounting challenges to be agile and responsive to cope with market changes, so as to achieve the competitiveness of producing and delivering products to the market timely and cost-effectively. This paper introduces a currency-based iterative agent bidding mechanism to effectively and cost-efficiently integrate the activities associated with production planning and control, so as to achieve an optimised process plan and schedule. The aim is to enhance the agility of manufacturing systems to accommodate dynamic changes in the market and production. The iterative bidding mechanism is executed based on currency-like metrics; each operation to be performed is assigned with a virtual currency value and agents bid for the operation if they make a virtual profit based on this value. These currency values are optimised iteratively and so does the bidding process based on new sets of values. This is aimed at obtaining better and better production plans, leading to near-optimality. A genetic algorithm is proposed to optimise the currency values at each iteration. In this paper, the implementation of the mechanism and the test case simulation results are also discussed. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This thesis includes analysis of disordered spin ensembles corresponding to Exact Cover, a multi-access channel problem, and composite models combining sparse and dense interactions. The satisfiability problem in Exact Cover is addressed using a statistical analysis of a simple branch and bound algorithm. The algorithm can be formulated in the large system limit as a branching process, for which critical properties can be analysed. Far from the critical point a set of differential equations may be used to model the process, and these are solved by numerical integration and exact bounding methods. The multi-access channel problem is formulated as an equilibrium statistical physics problem for the case of bit transmission on a channel with power control and synchronisation. A sparse code division multiple access method is considered and the optimal detection properties are examined in typical case by use of the replica method, and compared to detection performance achieved by interactive decoding methods. These codes are found to have phenomena closely resembling the well-understood dense codes. The composite model is introduced as an abstraction of canonical sparse and dense disordered spin models. The model includes couplings due to both dense and sparse topologies simultaneously. The new type of codes are shown to outperform sparse and dense codes in some regimes both in optimal performance, and in performance achieved by iterative detection methods in finite systems.
Resumo:
Nearest feature line-based subspace analysis is first proposed in this paper. Compared with conventional methods, the newly proposed one brings better generalization performance and incremental analysis. The projection point and feature line distance are expressed as a function of a subspace, which is obtained by minimizing the mean square feature line distance. Moreover, by adopting stochastic approximation rule to minimize the objective function in a gradient manner, the new method can be performed in an incremental mode, which makes it working well upon future data. Experimental results on the FERET face database and the UCI satellite image database demonstrate the effectiveness.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over-specified boundary, in the case of the alternating iterative algorithm of ` 12 ` 12 `$12 `&12 `#12 `^12 `_12 `%12 `~12 *Kozlov91 applied to Cauchy problems for the modified Helmholtz equation. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed methods.
Resumo:
In this article, an iterative algorithm based on the Landweber-Fridman method in combination with the boundary element method is developed for solving a Cauchy problem in linear hydrostatics Stokes flow of a slow viscous fluid. This is an iteration scheme where mixed well-posed problems for the stationary generalized Stokes system and its adjoint are solved in an alternating way. A convergence proof of this procedure is included and an efficient stopping criterion is employed. The numerical results confirm that the iterative method produces a convergent and stable numerical solution. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2007
Resumo:
The focus of our work is the verification of tight functional properties of numerical programs, such as showing that a floating-point implementation of Riemann integration computes a close approximation of the exact integral. Programmers and engineers writing such programs will benefit from verification tools that support an expressive specification language and that are highly automated. Our work provides a new method for verification of numerical software, supporting a substantially more expressive language for specifications than other publicly available automated tools. The additional expressivity in the specification language is provided by two constructs. First, the specification can feature inclusions between interval arithmetic expressions. Second, the integral operator from classical analysis can be used in the specifications, where the integration bounds can be arbitrary expressions over real variables. To support our claim of expressivity, we outline the verification of four example programs, including the integration example mentioned earlier. A key component of our method is an algorithm for proving numerical theorems. This algorithm is based on automatic polynomial approximation of non-linear real and real-interval functions defined by expressions. The PolyPaver tool is our implementation of the algorithm and its source code is publicly available. In this paper we report on experiments using PolyPaver that indicate that the additional expressivity does not come at a performance cost when comparing with other publicly available state-of-the-art provers. We also include a scalability study that explores the limits of PolyPaver in proving tight functional specifications of progressively larger randomly generated programs. © 2014 Springer International Publishing Switzerland.
Resumo:
Supply chain formation (SCF) is the process of determining the set of participants and exchange relationships within a network with the goal of setting up a supply chain that meets some predefined social objective. Many proposed solutions for the SCF problem rely on centralized computation, which presents a single point of failure and can also lead to problems with scalability. Decentralized techniques that aid supply chain emergence offer a more robust and scalable approach by allowing participants to deliberate between themselves about the structure of the optimal supply chain. Current decentralized supply chain emergence mechanisms are only able to deal with simplistic scenarios in which goods are produced and traded in single units only and without taking into account production capacities or input-output ratios other than 1:1. In this paper, we demonstrate the performance of a graphical inference technique, max-sum loopy belief propagation (LBP), in a complex multiunit unit supply chain emergence scenario which models additional constraints such as production capacities and input-to-output ratios. We also provide results demonstrating the performance of LBP in dynamic environments, where the properties and composition of participants are altered as the algorithm is running. Our results suggest that max-sum LBP produces consistently strong solutions on a variety of network structures in a multiunit problem scenario, and that performance tends not to be affected by on-the-fly changes to the properties or composition of participants.