5 resultados para Isoxazole

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)](ClO) has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S = 0) and high-spin (S = 2) states. Temperaturedependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with T(?) = 223 and T(?) = 213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below T. The present study reveals an increase in high-spin fraction upon heating in the temperature range below T, and an explanation is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

57Fe Mössbauer spectroscopy of the mononuclear [Fe(II)(isoxazole)6](BF4) 2compound has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S = 0) and high-spin (S = 2) states. A temperature-dependent spin transition curve has been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures in the 240-60K range during the cooling and heating cycle. The compound exhibits a temperature-dependent two-step spin transition phenomenon with Tsco (step 1) = 92 and Tsco (step2) = 191K. The compound has three high-spin Fe(II) sites at the highest temperature of study; among them, two have slightly different coordination environments. These two Fe(II) sites are found to undergo a spin transition, while the third Fe(II) site retains the high-spin state over the whole temperature range. Possible reasons for the formation of the two steps in the spin transition curve are discussed. The observations made from the present study are in complete agreement with those envisaged from earlier magnetic and structural studies made on [Fe(II)(isoxazole)6](BF4)2, but highlights the nature of the spin crossover mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and spin-crossover magnetic behavior of [FeII16][BF4]2 (1 = isoxazole) and [FeII16][ClO4]2 have been studied. [FeII16][BF4]2 undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3̄, a = 17.4387(4) Å, c = 7.6847(2) Å] and at 130 K [space group P1̄, a = 17.0901(2) Å, b = 16.7481(2) Å, c = 7.5413(1) Å, α = 90.5309(6)°, β = 91.5231(6)°, γ = 117.8195(8)°] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 μB is consistent with high-spin Fe(II). A plateau in μ(T) having a moment of 3.3 μB centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe−N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [FeII16][ClO4]2 [space group P3̄, a = 17.5829(3) Å, c = 7.8043(2) Å, β = 109.820 (3)°, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [FeII16][ClO4]2 slowly decomposes in solutions containing acetic anhydride to form [FeIII3O(OAc)613][ClO4] [space group I2, a = 10.1547(7) Å, b = 16.5497(11) Å, c = 10.3205(9) Å, β = 109.820 (3)°, T = 200 K]. The isosceles Fe3 unit contains two Fe···Fe distances of 3.2844(1) Å and a third Fe···Fe distance of 3.2857(1) Å. The magnetic data can be fit to a trinuclear model with ℋ = −2J(S1·S2 + S2·S3) − 2J13(S1·S3), where J = −27.1 and J13 = −32.5 cm-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug resistance protein 1 (MRP1) confers drug resistance and also mediates cellular efflux of many organic anions. MRP1 also transports glutathione (GSH); furthermore, this tripeptide stimulates transport of several substrates, including estrone 3-sulfate. We have previously shown that mutations of Lys(332) in transmembrane helix (TM) 6 and Trp(1246) in TM17 cause different substrate-selective losses in MRP1 transport activity. Here we have extended our characterization of mutants K332L and W1246C to further define the different roles these two residues play in determining the substrate and inhibitor specificity of MRP1. Thus, we have shown that TM17-Trp(1246) is crucial for conferring drug resistance and for binding and transport of methotrexate, estradiol glucuronide, and estrone 3-sulfate, as well as for binding of the tricyclic isoxazole inhibitor N-[3-(9-chloro-3-methyl-4-oxo-4H-isoxazolo-[4,3-c]quinolin-5-yl)-cyclohexylmethyl]-benzamide (LY465803). In contrast, TM6-Lys(332) is important for enabling GSH and GSH-containing compounds to serve as substrates (e.g., leukotriene C(4)) or modulators (e.g., S-decyl-GSH, GSH disulfide) of MRP1 and, further, for enabling GSH (or S-methyl-GSH) to enhance the transport of estrone 3-sulfate and increase the inhibitory potency of LY465803. On the other hand, both mutants are as sensitive as wild-type MRP1 to the non-GSH-containing inhibitors (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK571), 1-[2-hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]-ethanone (LY171883), and highly potent 6-[4'-carboxyphenylthio]-5[S]-hydroxy-7[E], 11[Z]14[Z]-eicosatetrenoic acid (BAY u9773). Finally, the differing abilities of the cysteinyl leukotriene derivatives leukotriene C(4), D(4), and F(4) to inhibit estradiol glucuronide transport by wild-type and K332L mutant MRP1 provide further evidence that TM6-Lys(332) is involved in the recognition of the gamma-Glu portion of substrates and modulators containing GSH or GSH-like moieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this chapter, selected results obtained so far on Fe(II) spin crossover compounds of 1,2,4-triazole, isoxazole and tetrazole derivatives are summarized and analysed. These materials include the only compounds known to have Fe(II)N6 spin crossover chromophores consisting of six chemically identical heterocyclic ligands. Particular attention is paid to the coordination modes for substituted 1,2,4-triazole derivatives towards Fe(II) resulting in polynuclear and mononuclear compounds exhibiting Fe(II) spin transitions. Furthermore, the physical properties of mononuclear Fe(II) isoxazole and 1-alkyl-tetrazole compounds are discussed in relation to their structures. It will also be shown that the use of α,β- and α,ω-bis(tetrazol-1-yl)alkane type ligands allowed a novel strategy towards obtaining polynuclear Fe(II) spin crossover materials.