5 resultados para Isola di calore, Ray-tracing, Pianificazione urbanistica

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a non-invasive phakometric method for determining corneal axis rotation relative to the visual axis (β) together with crystalline lens axis tilt (α) and decentration (d) relative to the corneal axis. This does not require corneal contact A-scan ultrasonography for the measurement of intraocular surface separations. Theoretical inherent errors of the method, evaluated by ray tracing through schematic eyes incorporating the full range of human ocular component variations, were found to be larger than the measurement errors (β < 0.67°, α < 0.72° and d < 0.08 mm) observed in nine human eyes with known ocular component dimensions. Intersubject variations (mean ± S.D.: β = 6.2 ± 3.4° temporal, α = 0.2 ± 1.8° temporal and d = 0.1 ± 0.1 mm temporal) and repeatability (1.96 × S.D. of difference between repeat readings: β ± 2.0°, α ± 1.8° and d ± 0.2 mm) were studied by measuring the left eyes of 45 subjects (aged 18-42 years, 29 females and 16 males, 15 Caucasians, 29 Indian Asians, one African, refractive error range -7.25 to +1.25 D mean spherical equivalent) on two occasions. © 2005 The College of Optometrists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite numerous investigations, the aetiology and mechanism of accommodation and presbyopia remains equivocal. Using Gaussian first-order ray tracing calculations, we examine the contribution that ocular axial distances make to the accommodation response. Further, the influence of age and ametropia are also considered. The data show that all changes in axial distances during accommodation reduce the accommodation response, with the reduction in anterior chamber depth contributing most to this overall attenuation. Although the total power loss due to the changes in axial distances remained constant with increasing age, hyperopes exhibited less accommodation than myopes. The study, therefore, enhances our understanding of biometric accommodative changes and demonstrates the utility of vergence analysis in the assessment of accommodation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many workers have studied the ocular components which occur in eyes exhibiting differing amounts of central refractive error but few have ever considered the additional information that could be derived from a study of peripheral refraction. Before now, peripheral refraction has either been measured in real eyes or has otherwise been modelled in schematic eyes of varying levels of sophistication. Several differences occur between measured and modelled results which, if accounted for, could give rise to more information regarding the nature of the optical and retinal surfaces and their asymmetries. Measurements of ocular components and peripheral refraction, however, have never been made in the same sample of eyes. In this study, ocular component and peripheral refractive measurements were made in a sample of young near-emmetropic, myopic and hyperopic eyes. The data for each refractive group was averaged. A computer program was written to construct spherical surfaced schematic eyes from this data. More sophisticated eye models were developed making use of linear algebraic ray tracing program. This method allowed rays to be traced through toroidal aspheric surfaces which were translated or rotated with respect to each other. For simplicity, the gradient index optical nature of the crystalline lens was neglected. Various alterations were made in these eye models to reproduce the measured peripheral refractive patterns. Excellent agreement was found between the modelled and measured peripheral refractive values over the central 70o of the visual field. This implied that the additional biometric features incorporated in each eye model were representative of those which were present in the measured eyes. As some of these features are not otherwise obtainable using in vivo techniques, it is proposed that the variation of refraction in the periphery offers a very useful optical method for studying human ocular component dimensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis examined solar thermal collectors for use in alternative hybrid solar-biomass power plant applications in Gujarat, India. Following a preliminary review, the cost-effective selection and design of the solar thermal field were identified as critical factors underlying the success of hybrid plants. Consequently, the existing solar thermal technologies were reviewed and ranked for use in India by means of a multi-criteria decision-making method, the Analytical Hierarchy Process (AHP). Informed by the outcome of the AHP, the thesis went on to pursue the Linear Fresnel Reflector (LFR), the design of which was optimised with the help of ray-tracing. To further enhance collector performance, LFR concepts incorporating novel mirror spacing and drive mechanisms were evaluated. Subsequently, a new variant, termed the Elevation Linear Fresnel Reflector (ELFR) was designed, constructed and tested at Aston University, UK, therefore allowing theoretical models for the performance of a solar thermal field to be verified. Based on the resulting characteristics of the LFR, and data gathered for the other hybrid system components, models of hybrid LFR- and ELFR-biomass power plants were developed and analysed in TRNSYS®. The techno-economic and environmental consequences of varying the size of the solar field in relation to the total plant capacity were modelled for a series of case studies to evaluate different applications: tri-generation (electricity, ice and heat), electricity-only generation, and process heat. The case studies also encompassed varying site locations, capacities, operational conditions and financial situations. In the case of a hybrid tri-generation plant in Gujarat, it was recommended to use an LFR solar thermal field of 14,000 m2 aperture with a 3 tonne biomass boiler, generating 815 MWh per annum of electricity for nearby villages and 12,450 tonnes of ice per annum for local fisheries and food industries. However, at the expense of a 0.3 ¢/kWh increase in levelised energy costs, the ELFR increased saving of biomass (100 t/a) and land (9 ha/a). For solar thermal applications in areas with high land cost, the ELFR reduced levelised energy costs. It was determined that off-grid hybrid plants for tri-generation were the most feasible application in India. Whereas biomass-only plants were found to be more economically viable, it was concluded that hybrid systems will soon become cost competitive and can considerably improve current energy security and biomass supply chain issues in India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sizeable amount of the testing in eye care, requires either the identification of targets such as letters to assess functional vision, or the subjective evaluation of imagery by an examiner. Computers can render a variety of different targets on their monitors and can be used to store and analyse ophthalmic images. However, existing computing hardware tends to be large, screen resolutions are often too low, and objective assessments of ophthalmic images unreliable. Recent advances in mobile computing hardware and computer-vision systems can be used to enhance clinical testing in optometry. High resolution touch screens embedded in mobile devices, can render targets at a wide variety of distances and can be used to record and respond to patient responses, automating testing methods. This has opened up new opportunities in computerised near vision testing. Equally, new image processing techniques can be used to increase the validity and reliability of objective computer vision systems. Three novel apps for assessing reading speed, contrast sensitivity and amplitude of accommodation were created by the author to demonstrate the potential of mobile computing to enhance clinical measurement. The reading speed app could present sentences effectively, control illumination and automate the testing procedure for reading speed assessment. Meanwhile the contrast sensitivity app made use of a bit stealing technique and swept frequency target, to rapidly assess a patient’s full contrast sensitivity function at both near and far distances. Finally, customised electronic hardware was created and interfaced to an app on a smartphone device to allow free space amplitude of accommodation measurement. A new geometrical model of the tear film and a ray tracing simulation of a Placido disc topographer were produced to provide insights on the effect of tear film breakdown on ophthalmic images. Furthermore, a new computer vision system, that used a novel eye-lash segmentation technique, was created to demonstrate the potential of computer vision systems for the clinical assessment of tear stability. Studies undertaken by the author to assess the validity and repeatability of the novel apps, found that their repeatability was comparable to, or better, than existing clinical methods for reading speed and contrast sensitivity assessment. Furthermore, the apps offered reduced examination times in comparison to their paper based equivalents. The reading speed and amplitude of accommodation apps correlated highly with existing methods of assessment supporting their validity. Their still remains questions over the validity of using a swept frequency sine-wave target to assess patient’s contrast sensitivity functions as no clinical test provides the range of spatial frequencies and contrasts, nor equivalent assessment at distance and near. A validation study of the new computer vision system found that the authors tear metric correlated better with existing subjective measures of tear film stability than those of a competing computer-vision system. However, repeatability was poor in comparison to the subjective measures due to eye lash interference. The new mobile apps, computer vision system, and studies outlined in this thesis provide further insight into the potential of applying mobile and image processing technology to enhance clinical testing by eye care professionals.