34 resultados para Iron foundries Production control Data processing
em Aston University Research Archive
Resumo:
This thesis deals with the problems associated with the planning and control of production, with particular reference to a small aluminium die casting company. The main problem areas were identified as: (a) A need to be able to forecast the customers demands upon the company's facilities. (b) A need to produce a manufacturing programme in which the output of the foundry (or die casting section) was balanced with the available capacity in the machine shop. (c) The need to ensure that the resultant system enabled the company's operating budget to have a reasonable chance of being achieved. At the commencement of the research work the major customers were members of the automobile industry and had their own system of forecasting, from which they issued manufacturing schedules to their component suppliers, The errors in the forecast were analysed and the distributions noted. Using these distributions the customer's forecast was capable of being modified to enable his final demand to be met with a known degree of confidence. Before a manufacturing programme could be developed the actual manufacturing system had to be reviewed and it was found that as with many small companies there was a remarkable lack of formal control and written data. Relevant data with regards to the component and the manufacturing process had therefore to be collected and analysed. The foundry process was fixed but the secondary machining operations were analysed by a technique similar to Component Flow Analysis and as a result the machines were arranged in a series of flow lines. A system of manual production control was proposed and for comparison, a local computer bureau was approached and a system proposed incorporating the production of additional management information. These systems are compared and the relative merits discussed and a proposal made for implementation.
Resumo:
Photonic technologies for data processing in the optical domain are expected to play a major role in future high-speed communications. Nonlinear effects in optical fibres have many attractive features and great, but not yet fully explored potential for optical signal processing. Here we provide an overview of our recent advances in developing novel techniques and approaches to all-optical processing based on fibre nonlinearities.
Resumo:
Computerised production control developments have concentrated on Manufacturing Resources Planning (MRP II) systems. The literature suggests however, that despite the massive investment in hardware, software and management education, successful implementation of such systems in manufacturing industries has proved difficult. This thesis reviews the development of production planning and control systems, in particular, investigates the causes of failures in implementing MRP/MRP II systems in industrial environments and argues that the centralised and top-down planning structure, as well as the routine operational methodology of such systems, is inherently prone to failure. The thesis reviews the control benefits of cellular manufacturing systems but concludes that in more dynamic manufacturing environments, techniques such as Kanban are inappropriate. The basic shortcomings of MRP II systems are highlighted and a new enhanced operational methodology based on distributed planning and control principles is introduced. Distributed Manufacturing Resources Planning (DMRP), was developed as a capacity sensitive production planning and control solution for cellular manufacturing environments. The system utilises cell based, independently operated MRP II systems, integrated into a plant-wide control system through a Local Area Network. The potential benefits of adopting the system in industrial environments is discussed and the results of computer simulation experiments to compare the performance of the DMRP system against the conventional MRP II systems presented. DMRP methodology is shown to offer significant potential advantages which include ease of implementation, cost effectiveness, capacity sensitivity, shorter manufacturing lead times, lower working in progress levels and improved customer service.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing. © 2005 IEEE.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.
Resumo:
It is well established that speech, language and phonological skills are closely associated with literacy, and that children with a family risk of dyslexia (FRD) tend to show deficits in each of these areas in the preschool years. This paper examines what the relationships are between FRD and these skills, and whether deficits in speech, language and phonological processing fully account for the increased risk of dyslexia in children with FRD. One hundred and fifty-three 4-6-year-old children, 44 of whom had FRD, completed a battery of speech, language, phonology and literacy tasks. Word reading and spelling were retested 6 months later, and text reading accuracy and reading comprehension were tested 3 years later. The children with FRD were at increased risk of developing difficulties in reading accuracy, but not reading comprehension. Four groups were compared: good and poor readers with and without FRD. In most cases good readers outperformed poor readers regardless of family history, but there was an effect of family history on naming and nonword repetition regardless of literacy outcome, suggesting a role for speech production skills as an endophenotype of dyslexia. Phonological processing predicted spelling, while language predicted text reading accuracy and comprehension. FRD was a significant additional predictor of reading and spelling after controlling for speech production, language and phonological processing, suggesting that children with FRD show additional difficulties in literacy that cannot be fully explained in terms of their language and phonological skills. It is well established that speech, language and phonological skills are closely associated with literacy, and that children with a family risk of dyslexia (FRD) tend to show deficits in each of these areas in the preschool years. This paper examines what the relationships are between FRD and these skills, and whether deficits in speech, language and phonological processing fully account for the increased risk of dyslexia in children with FRD. One hundred and fifty-three 4-6-year-old children, 44 of whom had FRD, completed a battery of speech, language, phonology and literacy tasks. © 2014 John Wiley & Sons Ltd.
Resumo:
The recent explosive growth in advanced manufacturing technology (AMT) and continued development of sophisticated information technologies (IT) is expected to have a profound effect on the way we design and operate manufacturing businesses. Furthermore, the escalating capital requirements associated with these developments have significantly increased the level of risk associated with initial design, ongoing development and operation. This dissertation has examined the integration of two key sub-elements of the Computer Integrated Manufacturing (CIM) system, namely the manufacturing facility and the production control system. This research has concentrated on the interactions between production control (MRP) and an AMT based production facility. The disappointing performance of such systems has been discussed in the context of a number of potential technological and performance incompatibilities between these two elements. It was argued that the design and selection of operating policies for both is the key to successful integration. Furthermore, policy decisions are shown to play an important role in matching the performance of the total system to the demands of the marketplace. It is demonstrated that a holistic approach to policy design must be adopted if successful integration is to be achieved. It is shown that the complexity of the issues resulting from such an approach required the formulation of a structured design methodology. Such a methodology was subsequently developed and discussed. This combined a first principles approach to the behaviour of system elements with the specification of a detailed holistic model for use in the policy design environment. The methodology aimed to make full use of the `low inertia' characteristics of AMT, whilst adopting a JIT configuration of MRP and re-coupling the total system to the market demands. This dissertation discussed the application of the methodology to an industrial case study and the subsequent design of operational policies. Consequently a novel approach to production control resulted. A central feature of which was a move toward reduced manual intervention in the MRP processing and scheduling logic with increased human involvement and motivation in the management of work-flow on the shopfloor. Experimental results indicated that significant performance advantages would result from the adoption of the recommended policy set.
Resumo:
This paper reviews some basic issues and methods involved in using neural networks to respond in a desired fashion to a temporally-varying environment. Some popular network models and training methods are introduced. A speech recognition example is then used to illustrate the central difficulty of temporal data processing: learning to notice and remember relevant contextual information. Feedforward network methods are applicable to cases where this problem is not severe. The application of these methods are explained and applications are discussed in the areas of pure mathematics, chemical and physical systems, and economic systems. A more powerful but less practical algorithm for temporal problems, the moving targets algorithm, is sketched and discussed. For completeness, a few remarks are made on reinforcement learning.
Resumo:
All-optical data processing is expected to play a major role in future optical communications. The fiber nonlinear optical loop mirror (NOLM) is a valuable tool in optical signal processing applications. This paper presents an overview of our recent advances in developing NOLM-based all-optical processing techniques for application in fiber-optic communications. The use of in-line NOLMs as a general technique for all-optical passive 2R (reamplification, reshaping) regeneration of return-to-zero (RZ) on-off keyed signals in both high-speed, ultralong-distance transmission systems and terrestrial photonic networks is reviewed. In this context, a theoretical model enabling the description of the stable propagation of carrier pulses with periodic all-optical self-regeneration in fiber systems with in-line deployment of nonlinear optical devices is presented. A novel, simple pulse processing scheme using nonlinear broadening in normal dispersion fiber and loop mirror intensity filtering is described, and its employment is demonstrated as an optical decision element at a RZ receiver as well as an in-line device to realize a transmission technique of periodic all-optical RZ-nonreturn-to-zero-like format conversion. The important issue of phase-preserving regeneration of phase-encoded signals is also addressed by presenting a new design of NOLM based on distributed Raman amplification in the loop fiber. © 2008 Elsevier Inc. All rights reserved.