2 resultados para Ion removal

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding of [3H]inositol hexakisphosphate ([3H] InsP6) to rat cerebellar membranes has been characterized with the objective of establishing the role, if any, of a membrane protein receptor. In the presence of EDTA, we have previously identified an InsP6-binding site with a capacity of approximately 20 pmol/mg protein (Hawkins, P. T., Reynolds, D. J. M., Poyner, D. R., and Hanley, M. R. (1990) Biochem. Biophys. Res. Commun. 167, 819-827). However, in the presence of 1 mM Mg2+, the capacity of [3H]InsP6 binding to membranes was increased approximately 9-fold. This enhancing effect of Mg2+ was reversed by addition of 10 microM of several cation chelators, suggesting that the increased binding required trace quantities of other metal cations. This is supported by experiments where it was possible to saturate binding by addition of excess membranes, despite not significantly depleting radioligand, pointing to removal of some other factor. Removal of endogenous cations from the binding assay by pretreatment with chelex resin also prevents the Mg(2+)-induced potentiation. Consideration of the specificity of the chelators able to abolish this potentiation suggested involvement of Fe3+ or Al3+. Both these ions (but not several others) were able to increase [3H]InsP6 binding to chelex-pretreated membranes at concentrations of 1 microM. It is possible to demonstrate synergy between Fe3+ and Mg2+ under these conditions. We propose that [3H]InsP6 may interact with membranes through non-protein recognition possibly via phospholipids, in a manner dependent upon trace metals. The implications of this for InsP6 biology are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion exchange resins are used for many purposes in various areas of science and commerce. One example is the use of cation exchange resins in the nuclear industry for the clean up of radioactively contaminated water (for example the removal of 137Cs). However, during removal of radionuclides, the resin itself becomes radioactively contaminated, and must be treated as Intermediate Level Waste. This radioactive contamination of the resin creates a disposal problem. Conventionally, there are two main avenues of disposal for industrial wastes, landfill burial or incineration. However, these are regarded as inappropriate for the disposal of the cation exchange resin involved in this project. Thus, a method involving the use of Fenton's Reagent (Hydrogen Peroxide/soluble Iron catalyst) to destroy the resin by wet oxidation has been developed. This process converts 95% of the solid resin to gaseous CO2, thus greatly reducing the volume of radioactive waste that has to be disposed of. However, hydrogen peroxide is an expensive reagent, and is a major component of the cost of any potential plant for the destruction of ion exchange resin. The aim of my project has been to discover a way of improving the efficiency of the destruction of the resin thus reducing the cost involved in the use of hydrogen peroxide. The work on this problem has been concentrated in two main areas:-1) Use of analytical techniques such as NMR and IR to follow the process of the hydrogen peroxide destruction of both resin beads and model systems such as water soluble calixarenes. 2) Use of various physical and chemical techniques in an attempt to improve the overall efficiency of hydrogen peroxide utilization. Examples of these techniques include UV irradiation, both with and without a photocatalyst, oxygen carrying molecules and various stirring regimes.