69 resultados para Intrinsically photosensitive
em Aston University Research Archive
Resumo:
This paper deals with the problematic of development methodologies for organisational information systems and especially with their application to business systems. Historically, information systems development methodologies tend to fail, because either they take the organisational purposefulness for granted, or they do not analyse it thoroughly. This paper's position is that the analysis, and the definition or redefinition of the systemic purpose are regarded as the utmost expression of the system 's purposefulness. This is to be achieved by ensuring the participation of all the stakeholders who affect, or are affected by, a particular business system's operations. The nature of participation, defined as a process of the stakeholders' perceptual exchanges, is deemed to be problematic in itself, due to the influence exerted upon it by organisational power, coercion and false consciousness. The paper highlights the philosophical reasons for the failures of information systems development methodologies, and provides a conceptual solution to this problematic as well as a strategy for the development of intrinsically motivated organisational information systems. The intrinsically motivated information systems methodology outlined here (BSPA) is intended to yield organisational information systems that demonstrably improve co-ordination of organisational activities, by enabling the development and maintenance of a single/multifaceted view of purpose throughout organisations.
Resumo:
Despite the multiplicity of approaches and techniques so far applied for identifying the pathophysiological mechanisms of photosensitive epilepsy, a generally agreed explanation of the phenomenon is still lacking. The present thesis reports on three interlinked original experimental studies conducted to explore the neurophysiological correlates and the phatophysiological mechanism of photosensitive epilepsy. In the first study I assessed the role of the habituation of the Visual Evoked Response test as a possible biomarker of epileptic visual sensitivity. The two subsequent studies were designed to address specific research questions emerging from the results of the first study. The findings of the three intertwined studies performed provide experimental evidence that photosensitivity is associated with changes in a number of electrophysiological measures suggestive of altered balance between excitatory and inhibitory cortical processes. Although a strong clinical association does exist between specific epileptic syndromes and visual sensitivity, results from this research indicate that photosensitivity trait seems to be the expression of specific pathophysiological mechanisms quite distinct from the “epileptic” phenotype. The habituation of Pattern Reversal Visual Evoked Potential (PR-VEP) appears as a reliable candidate endo-phenotype of visual sensitivity. Interpreting the findings of this study in the context of the broader literature on visual habituation we can hypothesise the existence of a shared neurophysiological background between photosensitive epilepsy and migraine. Future studies to elucidate the relationship between the proposed indices of cortical excitability and specific polymorphisms of excitatroy and inhibitory neurotransmission will need to be conducted to assess their potential role as biomarkers of photosensitivity.
Resumo:
Photosensitive epilepsy and associated pattern sensitivity are more prevalent in females and are usually treated with sodium valproate. Sodium valproate has an adverse effect profile, which particularly affects females, including teratogenicity, association with the polycystic ovary syndrome and weight gain. It would be useful therefore if an alternative treatment for photosensitive epilepsy could be found. The principle aim of this study was to investigate the effectiveness of lamotrigine in the treatment of photosensitive epilepsy in adults and children. Patients were either drug-naive, commencing lamotrigine therapy or were transferring from other antiepileptic drugs to lamotrigine (primarily sodium valproate) due to lack of response, adverse effects or desired pregnancy. The photoparoxsymal response in the electroencephalograph was used as the primary measure of photo and pattern sensitivity. In addition the effects of lamotrigine on occipital spikes and normal responses in the EEG to visual stimuli were investigated. Secondary measures also included the resting EEG, seizures, body mass index, menstrual function, mood and cognitive function. The results suggest that in adult patients lamotrigine is efficacious in the treatment of photosensitive epilepsy, although it appears inferior to sodium valproate. Lamotrigine does however have a more favourable adverse effect profile than valproate. The results indicate that lamotrigine therapy is suitable for photosensitive epilepsy in women of childbearing age or in patients experiencing unacceptable adverse effects with valproate therapy. Patients are more likely to respond to lamotrigine treatment if they present with sensitivity to a limited number of frequencies. Lamotrigine does not seem to be as efficacious in the treatment of children, although against it may be considered a second line drug if the child does not respond to or will not tolerate sodium valproate.
Resumo:
Chapters one to three are an introduction to photosensitive epilepsy, electroencephalography (EEG) and the magnocellular and parvocellular visual pathways. Photoparoxysmal response (PPR) are strongly associated with photosensitive epilepsy. Chapters four to nine investigated whether occipital spikes were associated with PPR and hence with photosensitive epilepsy. The chapters investigated whether the response types showed similar dependence on stimulus characteristics using EEG. Chapters four and five found that occipital spikes and PPR showed different dependence on colour and luminance contrast. The differences were consistent with the magnocellular pathway mediating occipital spikes and the pavocellular pathway mediating PPR. The study in chapter eight found that monocular occlusion had a significantly greater effect on PPR than on occipital spikes, which is further evidence against an association between the two types of response. Chapters six and seven showed that occipital spikes and PPR had similar optimum spatial and temporal frequencies. Chapter nine showed that both response types could be generated via stimulation of the periphery of the retina. However, these three chapters are not strong evidence of an association, as the results do not contradict the theory that the responses are generated via different pathways. The magnocellular and pavocellular pathways have similar optimum temporal and spatial frequencies and both are present in the periphery. In chapter ten, magnetoencephalography was used to estimate the source of activity underlying the components of the VEP and occipital spike. Changes in the amplitude and latency in the components of the normal VEP are associated with epilepsy. However, the source underlying the occipital spikes was not related to that underlying the components of the VEP so this is also removed as a source of evidence for an association between occipital spikes and photosensitive epilepsy.
Resumo:
Objective - To investigate visual habituation – a measure of visual cortical excitability – in photosensitive patients in pediatric age and compare the findings with a matched sample with idiopathic generalized epilepsies without photosensitivity and with normally developing children. Methods - We presented a full-field black-and-white checkerboard pattern, at 3 reversal/s with 100% contrast binocularly for 600 consecutive trials and measured the N75–P100 and P100–N145 pattern-reversal visual evoked potential inter-peak amplitudes and N75, P100, N145 latencies for the six blocks of 100 responses. As a measure of habituation we used the slope of the linear regression line of the N75–P100 and P100–N145 peak-to-peak amplitudes. The slope of the linear regression line of the N75–P100 and P100–N145 latencies was also analyzed. Results - Statistical analysis revealed significant differences between the three groups in the slope index of N75–P100 PR-VEP amplitude, with increased or constant amplitude in the PS group compare to the IGE and ND across the six blocks. Conclusions - Our results support the notion that photosensitivity is associated with altered control of excitatory and inhibitory cortical processes. The causal relationship between habituation deficit and photo-paroxysmal response needs to be further investigated with longitudinal studies. Significance This study supports the hypothesis that suppression of PR-VEP is a sensitive intermediate phenotype, which discriminates patients with photosensitivity from those with generalized epilepsies in pediatric age.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Purpose: To describe the electroclinical features of subjects who presented with a photosensitive benign myoclonic epilepsy in infancy (PBMEI). Methods: The patients were selected from a group of epileptic subjects with seizure onset in infancy or early childhood. Inclusion criteria were the presence of photic-induced myoclonic seizures and a favorable outcome. Cases with less than 24 month follow up were excluded from the analysis. Results: Eight patients were identified (4 males, 4 females). Personal history was uneventful. All of them had familial antecedents of epilepsy. Psychomotor development was normal in 6 cases, both before and after seizure onset. One patient showed a mild mental retardation and a further patient showed some behavioral disturbances. Neuroradiological investigations, when performed (5 cases), gave normal results. The clinical manifestations were typical and could vary from upward movements of the eyes to myoclonic jerks of the head and shoulders, isolated or briefly repetitive, never causing a fall. Age of onset was between 11 months and 3 years and 2 months. Characteristically, the seizures were always triggered by photic stimulation. Non photo-induced spontaneous myoclonic attacks were reported in 2 cases during the follow-up. Other types of seizures were present at follow-up in 2 cases. The outcome was favorable, even if, usually, seizure control required high AED plasma levels. Since the clinical symptoms were not recognized early, some patients were treated only many years after the onset of symptoms. Conclusion: Among BMEI patients, our cases constitute a subgroup in which myoclonic jerks were always triggered by photostimulation, in particular at onset of their epilepsy. © 2006 International League Against Epilepsy.
Resumo:
In this Letter, we report the fabrication of a highly photosensitive, microstructured polymer optical fiber using benzyl dimethyl ketal as a dopant, as well as the inscription of a fiber Bragg grating in the fiber. A refractive index change in the core of at least 3.2 × 10 has been achieved, providing a grating with a strong transmission rejection of -23 dB with an inscription time of only 13 min. The fabrication method has a big advantage compared to doping step index fiber since it enables doping of the fiber without using extra dopants to compensate for the index reduction in the core introduced by the photosensitive agent. © 2013 Optical Society of America.
Resumo:
A new and simple fabrication technique is reported for the UV inscription of intrinsically apodized chirped fibre gratings at an arbitrary Bragg wavelength employing a single chirped phase-mask in a scanning Talbot interferometer set-up. Chirped gratings have been successfully produced over a large wavelength range and with bandwidths up to 5 nm. These gratings exhibit the time-delay response of a small ripple effect. In the present paper a comparison with previously reported fabrication methods is given, showing the advantages and disadvantages of the different methods.
Resumo:
The facility to controlled triggered release from a “cage” system remains a key requirement for novel drug delivery. Earlier studies have shown that Bis-Azo PC based photosensitive liposomes are beneficial for drug delivery. Thus, the aim of this project was to develop photosensitive liposomes that can be used for the controlled release of drugs through UV irradiation, particularly therapeutic agents for the treatment of psoriasis. Bis-Azo PC was successfully synthesized and incorporated into a range of liposomal formulations, and these liposomes were applied for the controlled release of BSA-FITC. Bis-Azo PC sensitized liposomes were prepared via interdigitation fusion method. IFV containing optimum cholesterol amount in terms of protein loading, stability and photo-trigger release of protein was investigated. Further studies investigated the stability and triggered release of the HMT from IFV. Finally, permeation behavior of HMT and HMT-entrapped IFV through rat skin was examined using Franz cell. Results from protein study indicated that the stable entrapment of the model protein was feasible as shown through fluorescence spectroscopy and maximum of 84% protein release from IFV after 12 min of UV irradiation. Moreover, stability studies indicated that IFV were more stable at 4 0C as compared to 25 0C. Hence, DPPC:Chol:Bis-Azo PC (16:2:1) based IFV was chosen for the controlled release of HMT and these studies exhibited that photo-trigger release and stability data of HMT-entrapped IFV are in line with the protein results. Franz cell work inferred that HMT-entrapped IFV attributed to slower skin permeation as compared to HMT. CLSM also demonstrated that HMT can be used as a fluorescent label for the in vitro skin study. Overall, the work highlighted in this thesis has given useful insight into the potentials of Bis-Azo PC based IFV as a promising carrier for the treatment of psoriasis.
Resumo:
Polymer optical fibre Bragg gratings are useful for strain sensor applications for large dynamic range. We report recent progress in developing polymer optical fibres with higher photosensitivity and fabricating POF gratings at alternative wavelength. © 2010 Optical Society of America.
Resumo:
A rapid and efficient method to identify the weak points of the complex chemical structure of low band gap (LBG) polymers, designed for efficient solar cells, when submitted to light exposure is reported. This tool combines Electron Paramagnetic Resonance (EPR) using the 'spin trapping method' coupled with density functional theory modelling (DFT). First, the nature of the short life-time radicals formed during the early-stages of photo-degradation processes are determined by a spin-trapping technique. Two kinds of short life-time radical (R and R′O) are formed after 'short-duration' illumination in an inert atmosphere and in ambient air, respectively. Second, simulation allows the identification of the chemical structures of these radicals revealing the most probable photochemical process, namely homolytical scission between the Si atom of the conjugated skeleton and its pendent side-chains. Finally, DFT calculations confirm the homolytical cleavage observed by EPR, as well as the presence of a group that is highly susceptible to photooxidative attack. Therefore, the synergetic coupling of a spin trapping method with DFT calculations is shown to be a rapid and efficient method for providing unprecedented information on photochemical mechanisms. This approach will allow the design of LBG polymers without the need to trial the material within actual solar cell devices, an often long and costly screening procedure.
Resumo:
Since 1996 direct femtosecond inscription in transparent dielectrics has become the subject of intensive research. This enabling technology significantly expands the technological boundaries for direct fabrication of 3D structures in a wide variety of materials. It allows modification of non-photosensitive materials, which opens the door to numerous practical applications. In this work we explored the direct femtosecond inscription of waveguides and demonstrated at least one order of magnitude enhancement in the most critical parameter - the induced contrast of the refractive index in a standard borosilicate optical glass. A record high induced refractive contrast of 2.5×10-2 is demonstrated. The waveguides fabricated possess one of the lowest losses, approaching level of Fresnel reflection losses at the glassair interface. High refractive index contrast allows the fabrication of curvilinear waveguides with low bend losses. We also demonstrated the optimisation of the inscription regimes in BK7 glass over a broad range of experimental parameters and observed a counter-intuitive increase of the induced refractive index contrast with increasing translation speed of a sample. Examples of inscription in a number of transparent dielectrics hosts using high repetition rate fs laser system (both glasses and crystals) are also presented. Sub-wavelength scale periodic inscription inside any material often demands supercritical propagation regimes, when pulse peak power is more than the critical power for selffocusing, sometimes several times higher than the critical power. For a sub-critical regime, when the pulse peak power is less than the critical power for self-focusing, we derive analytic expressions for Gaussian beam focusing in the presence of Kerr non-linearity as well as for a number of other beam shapes commonly used in experiments, including astigmatic and ring-shaped ones. In the part devoted to the fabrication of periodic structures, we report on recent development of our point-by-point method, demonstrating the shortest periodic perturbation created in the bulk of a pure fused silica sample, by using third harmonics (? =267 nm) of fundamental laser frequency (? =800 nm) and 1 kHz femtosecond laser system. To overcome the fundamental limitations of the point-by-point method we suggested and experimentally demonstrated the micro-holographic inscription method, which is based on using the combination of a diffractive optical element and standard micro-objectives. Sub-500 nm periodic structures with a much higher aspect ratio were demonstrated. From the applications point of view, we demonstrate examples of photonics devices by direct femtosecond fabrication method, including various vectorial bend-sensors fabricated in standard optical fibres, as well as a highly birefringent long-period gratings by direct modulation method. To address the intrinsic limitations of femtosecond inscription at very shallow depths we suggested the hybrid mask-less lithography method. The method is based on precision ablation of a thin metal layer deposited on the surface of the sample to create a mask. After that an ion-exchange process in the melt of Ag-containing salts allows quick and low-cost fabrication of shallow waveguides and other components of integrated optics. This approach covers the gap in direct fs inscription of shallow waveguide. Perspectives and future developments of direct femtosecond micro-fabrication are also discussed.