4 resultados para Intrapulmonary Tidal Volume Distribution
em Aston University Research Archive
Resumo:
The size frequency distributions of discrete β-amyloid (Aβ) deposits were studied in single sections of the temporal lobe from patients with Alzheimer's disease. The size distributions were unimodal and positively skewed. In 18/25 (72%) tissues examined, a log normal distribution was a good fit to the data. This suggests that the abundances of deposit sizes are distributed randomly on a log scale about a mean value. Three hypotheses were proposed to account for the data: (1) sectioning in a single plane, (2) growth and disappearance of Aβ deposits, and (3) the origin of Aβ deposits from clusters of neuronal cell bodies. Size distributions obtained by serial reconstruction through the tissue were similar to those observed in single sections, which would not support the first hypothesis. The log normal distribution of Aβ deposit size suggests a model in which the rate of growth of a deposit is proportional to its volume. However, mean deposit size and the ratio of large to small deposits were not positively correlated with patient age or disease duration. The frequency distribution of Aβ deposits which were closely associated with 0, 1, 2, 3, or more neuronal cell bodies deviated significantly from a log normal distribution, which would not support the neuronal origin hypothesis. On the basis of the present data, growth and resolution of Aβ deposits would appear to be the most likely explanation for the log normal size distributions.
Resumo:
In previous Statnotes, many of the statistical tests described rely on the assumption that the data are a random sample from a normal or Gaussian distribution. These include most of the tests in common usage such as the ‘t’ test ), the various types of analysis of variance (ANOVA), and Pearson’s correlation coefficient (‘r’) . In microbiology research, however, not all variables can be assumed to follow a normal distribution. Yeast populations, for example, are a notable feature of freshwater habitats, representatives of over 100 genera having been recorded . Most common are the ‘red yeasts’ such as Rhodotorula, Rhodosporidium, and Sporobolomyces and ‘black yeasts’ such as Aurobasidium pelculans, together with species of Candida. Despite the abundance of genera and species, the overall density of an individual species in freshwater is likely to be low and hence, samples taken from such a population will contain very low numbers of cells. A rare organism living in an aquatic environment may be distributed more or less at random in a volume of water and therefore, samples taken from such an environment may result in counts which are more likely to be distributed according to the Poisson than the normal distribution. The Poisson distribution was named after the French mathematician Siméon Poisson (1781-1840) and has many applications in biology, especially in describing rare or randomly distributed events, e.g., the number of mutations in a given sequence of DNA after exposure to a fixed amount of radiation or the number of cells infected by a virus given a fixed level of exposure. This Statnote describes how to fit the Poisson distribution to counts of yeast cells in samples taken from a freshwater lake.
Resumo:
As a discipline, supply chain management (SCM) has traditionally been primarily concerned with the procurement, processing, movement and sale of physical goods. However an important class of products has emerged - digital products - which cannot be described as physical as they do not obey commonly understood physical laws. They do not possess mass or volume, and they require no energy in their manufacture or distribution. With the Internet, they can be distributed at speeds unimaginable in the physical world, and every copy produced is a 100% perfect duplicate of the original version. Furthermore, the ease with which digital products can be replicated has few analogues in the physical world. This paper assesses the effect of non-physicality on one such product – software – in relation to the practice of SCM. It explores the challenges that arise when managing the software supply chain and how practitioners are addressing these challenges. Using a two-pronged exploratory approach that examines the literature around software management as well as direct interviews with software distribution practitioners, a number of key challenges associated with software supply chains are uncovered, along with responses to these challenges. This paper proposes a new model for software supply chains that takes into account the non-physicality of the product being delivered. Central to this model is the replacement of physical flows with flows of intellectual property, the growing importance of innovation over duplication and the increased centrality of the customer in the entire process. Hybrid physical / digital supply chains are discussed and a framework for practitioners concerned with software supply chains is presented.
Resumo:
Two new types of phenolic resin-derived synthetic carbons with bi-modal and tri-modal pore-size distributions were used as supports for Pd catalysts. The catalysts were tested in chemoselective hydrogenation and hydrodehalogenation reactions in a compact multichannel flow reactor. Bi-modal and tri-modal micro-mesoporous structures of the synthetic carbons were characterised by N2 adsorption. HR-TEM, PXRD and XPS analyses were performed for characterising the synthesised catalysts. N2 adsorption revealed that tri-modal synthetic carbon possesses a well-developed hierarchical mesoporous structure (with 6.5 nm and 42 nm pores), contributing to a larger mesopore volume than the bi-modal carbon (1.57 cm3 g-1versus 1.23 cm3 g-1). It was found that the tri-modal carbon promotes a better size distribution of Pd nanoparticles than the bi-modal carbon due to presence of hierarchical mesopore limitting the growth of Pd nanoparticles. For all the model reactions investigated, the Pd catalyst based on tri-modal synthetic carbon (Pd/triC) show high activity as well as high stability and reproducibility. The trend in reactivities of different functional groups over the Pd/triC catalyst follows a general order alkyne ≫ nitro > bromo ≫ aldehyde.