27 resultados para Intramuscular triglyceride

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Biodiesel is a clean-burning, renewable and biodegradable diesel fuel substitute derived from animal fats and plant oils, which may play an important role in replacing diminishing fossil fuel reserves and combating climate change. Conventional biodiesel production uses soluble base catalysts, such as Na or K alkoxides, to convert oils into fuel, and as a result requires energy intensive aqueous quench cycles to isolate the biodiesel product. Results: Cs-doping nanoparticulate MgO, prepared via a novel, supercritical sol-gel method, yields a solid base catalyst with improved activity for the transesterification of pure triacylglycerides (TAGs) and olive oil. Conclusion: Here, X-ray absorption spectroscopy (XAS) is used to probe the local chemical environment of Cs atoms in order to identify the nature of the catalytically active species as CsMg(CO)(HO). © 2013 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural dolomitic rock has been investigated in the transesterification of C and C triglycerides and olive oil with a view to determining its viability as a solid base catalyst for use in biodiesel synthesis. XRD reveals that the dolomitic rock comprised 77% dolomite and 23% magnesian calcite. The generation of basic sites requires calcination at 900 °C, which increases the surface area and transforms the mineral into MgO nanocrystallites dispersed over CaO particles. Calcined dolomitic rock exhibits high activity towards the liquid phase transesterification of glyceryl tributyrate and trioctanoate, and even olive oil, with methanol for biodiesel production. © The Royal Society of Chemistry 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of Cs on the structure and basicity of nanocrystalline MgO was assessed via electron microscopy, CO2 chemisorption, XRD and XPS. Caesium incorporation via co-precipitation under supercritical conditions generates Cs2Mg(CO3)2 nanocrystallites with an enhanced density and strength of surface base sites. Wet impregnation proved less effective for modifying MgO nanocrystals. A strong synergy between Cs and Mg components in the co-precipitated material dramatically enhanced the rate of tributyrin transesterification with methanol relative to undoped MgO and homogeneous Cs2CO3 catalysts. On-stream deactivation of Cs-doped MgO reflects heavy surface carbon deposition and loss of the high activity Cs2Mg(CO3)2 phase due to limited Cs dissolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endurance-trained athletes experience a low level of postprandial lipaemia, but this rapidly increases with detraining. We sought to determine whether detraining-induced changes to postprandial metabolism influenced endothelial function and inflammation. Eight endurance-trained men each undertook two oral fat tolerance tests [blood taken fasted and for 6 h following a high-fat test meal (80 g fat, 80 g carbohydrate)]: one during a period of their normal training (trained) and one after 1 wk of no exercise (detrained). Endothelial function in the cutaneous microcirculation was assessed using laser Doppler imaging with iontophoresis in the fasted state and 4 h postprandially during each test. Fasting plasma triglyceride (TG) concentrations increased by 35% with detraining (P = 0.002), as did postprandial plasma (by 53%, P = 0.002), chylomicron (by 68%, P = 0.02) and very low-density lipoprotein (by 51%, P = 0.005) TG concentrations. Endothelial function decreased postprandially in both the trained (by 17%, P = 0.03) and detrained (by 22%, P = 0.03) conditions but did not differ significantly between the trained and detrained conditions in either the fasted or the postprandial states. These results suggest that, although fat ingestion induces endothelial dysfunction, interventions that alter postprandial TG metabolism will not necessarily concomitantly influence endothelial function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism behind the immunostimulatory effect obtained with the cationic liposomal vaccine adjuvant DDA:TDB remains unclear. One of the proposed hypotheses is the 'depot effect' in which the liposomal carrier helps to retain the antigen at the injection site thereby increasing the time of vaccine exposure to the immune cells. In the present study we devise a method to quantify the in vivo movement of liposomes and vaccine antigen using the radioisotopes H(3) and I(125) respectively. H(3)-labeled liposomes composed of dimethyldioctadecylammonium bromide (DDA) or an 8:1 molar ratio of DDA and trehalose 6,6-dibehenate (TDB) were administered in combination with I(125)-labeled Ag85B-ESAT-6 antigen, both via intramuscular and subcutaneous injection to mice. Furthermore characterisation of the liposomal system in simulated in vivo conditions was undertaken. Our results show that this dual-labeling technique is functional and reproducible. The administration of Ag85B-ESAT-6 without a liposomal carrier leads to rapid dissemination of the antigen from the site of injection. The administration of Ag85B-ESAT-6 together with either DDA or DDA:TDB liposomes however leads to deposition of the antigen at the injection site with detectable levels still being present 14 days post injection. Neither the incorporation of TDB nor the route of injection had any significant influence on the depot effect of DDA-based liposomes. The presence of TDB in DDA liposomes improves draining of liposomes to the lymph node in addition to increasing monocyte influx to the site of injection as highlighted by the intensive blue colouring of the injection site after pontamine blue staining of phagocytic cells in vivo. Our findings provide conclusive evidence for a cationic liposome-mediated deposition of antigen at the injection site with improved monocyte infiltration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C-terminal acylation of Lys(37) with myristic (MYR; tetradecanoic acid), palmitic (PAL; hexadecanoic acid) and stearic (octadecanoic acid) fatty acids with or without N-terminal acetylation was employed to develop long-acting analogues of the glucoregulatory hormone, glucose-dependent insulinotropic polypeptide (GIP). All GIP analogues exhibited resistance to dipeptidylpeptidase-IV (DPP-IV) and significantly improved in vitro cAMP production and insulin secretion. Administration of GIP analogues to ob/ob mice significantly lowered plasma glucose-GIP(Lys(37)MYR), N-AcGIP(Lys(37)MYR) and GIP(Lys(37)PAL) increased plasma insulin concentrations. GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) elicited protracted glucose-lowering effects when administered 24h prior to an intraperitoneal glucose load. Daily administration of GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) to ob/ob mice for 24 days decreased glucose and significantly improved plasma insulin, glucose tolerance and beta-cell glucose responsiveness. Insulin sensitivity, pancreatic insulin content and triglyceride levels were not changed. These data demonstrate that C-terminal acylation particularly with myristic acid provides a class of stable, longer-acting forms of GIP for further evaluation in diabetes therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of malignant tumors interact with the host to cause a syndrome of cachexia, characterized by extensive loss of adipose tissue and skeletal muscle mass, but with preservation of proteins in visceral tissues. Although anorexia is frequently present, the body composition changes in cancer cachexia cannot be explained by nutritional deprivation alone. Loss of skeletal muscle mass is a result of depression in protein synthesis and an increase in protein degradation. The main degradative pathway that has been found to have increased expression and activity in the skeletal muscle of cachectic patients is the ubiquitin-proteasome proteolytic pathway. Cachexia-inducing tumors produce catabolic factors such as proteolysis-inducing factor (PIF), a 24 kDa sulfated glycoprotein, which inhibit protein synthesis and stimulate degradation of intracellular proteins in skeletal muscle by inducing an increased expression of regulatory components of the ubiquitin-proteasome proteolytic pathway. While the oligosaccharide chains in PIF are required to initiate protein degradation the central polypeptide core may act as a growth and survival factor. Only cachexia-inducing tumors are capable of elaborating fully glycosylated PIF, and the selectivity of production possibly rests with the acquisition of the necessary glycosylating enzymes, rather than expressing the gene for the polypeptide core. Loss of adipose tissue is probably the result of an increase in catabolism rather than a defect in anabolism. A lipid mobilizing factor (LMF), identical with the plasma protein Zn-α2-glycoprotein (ZAG) is found in the urine of cachectic cancer patients and is produced by tumors causing a decrease in carcass lipid. LMF causes triglyceride hydrolysis in adipose tissue through a cyclic AMP-mediated process by interaction with a β3-adrenoreceptor. Thus, by producing circulating factors certain malignant tumors are able to interfere with host metabolism even without metastasis to that particular site. © 2004 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate delivery systems such as liposomes and polymeric nano- and microparticles are attracting great interest for developing new vaccines. Materials and formulation properties essential for this purpose have been extensively studied, but relatively little is known about the influence of the administration route of such delivery systems on the type and strength of immune response elicited. Thus, the present study aimed at elucidating the influence on the immune response when of immunising mice by different routes, such as the subcutaneous, intradermal, intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl chitosan (TMC) nanoparticles, and poly(lactide-co-glycolide) (PLGA) microparticles, all with and without specifically selected immune-response modifiers. The results showed that the route of administration caused only minor differences in inducing an antibody response of the IgG1 subclass, and any such differences were abolished upon booster immunisation with the various adjuvanted and non-adjuvanted delivery systems. In contrast, the administration route strongly affected both the kinetics and magnitude of the IgG2a response. A single intralymphatic administration of all evaluated delivery systems induced a robust IgG2a response, whereas subcutaneous administration failed to elicit a substantial IgG2a response even after boosting, except with the adjuvanted nanoparticles. The intradermal and intramuscular routes generated intermediate IgG2a titers. The benefit of the intralymphatic administration route for eliciting a Th1-type response was confirmed in terms of IFN-gamma production of isolated and re-stimulated splenocytes from animals previously immunised with adjuvanted and non-adjuvanted liposomes as well as with adjuvanted microparticles. Altogether the results show that the IgG2a associated with Th1-type immune responses are sensitive to the route of administration, whereas IgG1 response associated with Th2-type immune responses were relatively insensitive to the administration route of the particulate delivery systems. The route of administration should therefore be considered when planning and interpreting pre-clinical research or development on vaccine delivery systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The requirement of adjuvants in subunit protein vaccination is well known yet their mechanisms of action remain elusive. Of the numerous mechanisms suggested, cationic liposomes appear to fulfil at least three: the antigen depot effect, the delivery of antigen to antigen presenting cells (APCs) and finally the danger signal. We have investigated the role of antigen depot effect with the use of dual radiolabelling whereby adjuvant and antigen presence in tissues can be quantified. In our studies a range of cationic liposomes and different antigens were studied to determine the importance of physical properties such as liposome surface charge, antigen association and inherent lipid immunogenicity. More recently we have investigated the role of liposome size with the cationic liposome formulation DDA:TDB, composed of the cationic lipid dimethyldioctadecylammonium (DDA) and the synthetic mycobacterial glycolipid trehalose 6,6’-dibehenate (TDB). Vesicle size is a frequently investigated parameter which is known to result in different routes of endocytosis. It has been postulated that targeting different routes leads to different intracellular signaling pathway activation and it is certainly true that numerous studies have shown vesicle size to have an effect on the resulting immune responses (e.g. Th1 vs. Th2). Aim: To determine the effect of cationic liposome size on the biodistribution of adjuvant and antigen, the ensuing humoral and cell-mediated immune responses and the uptake and activation of antigen by APCs including macrophages and dendritic cells. Methods: DDA:TDB liposomes were made to three different sizes (~ 0.2, 0.5 and 2 µm) followed by the addition of tuberculosis antigen Ag85B-ESAT-6 therefore resulting in surface adsorption. Liposome formulations were injected into Balb/c or C57Bl/6 mice via the intramuscular route. The biodistribution of the liposome formulations was followed using dual radiolabelling. Tissues including muscle from the site of injection and local draining lymph nodes were removed and liposome and antigen presence quantified. Mice were also immunized with the different vaccine formulations and cytokine production (from Ag85B-ESAT-6 restimulated splenocytes) and antibody presence in blood assayed. Furthermore, splenocyte proliferation after restimulating with Ag85B-ESAT-6 was measured. Finally, APCs were compared for their ability to endocytose vaccine formulations and the effect this had on the maturation status of the cell populations was compared. Flow cytometry and fluorescence labelling was used to investigate maturation marker up-regulation and efficacy of phagocytosis. Results: Our results show that for an efficient Ag85B-ESAT-6 antigen depot at the injection site, liposomes composed of DDA and TDB are required. There is no significant change in the presence of liposome or antigen at 6hrs or 24hrs p.i, nor does liposome size have an effect. Approximately 0.05% of the injected liposome dose is detected in the local draining lymph node 24hrs p.i however protein presence is low (<0.005% dose). Preliminary in vitro data shows liposome and antigen endocytosis by macrophages; further studies on this will be presented in addition to the results of the immunisation study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, much interest has focused on the significance of inducing not only systemic immunity but also good local immunity at susceptible mucosal surfaces. A new field of mucosal immunity has been established as information accumulates on gut-associated lymphoid tissue, bronchus-associated lymphoid tissue and nasal-associated lymphoid tissue (GALT, BALT and NALT, respectively) and on their role in both local and systemic immune responses. This project, following the line of investigation started by other workers, was designed to study the use of microspheres to deliver antigens by the mucosal routes (oral and nasal). Antigen-containing microspheres were prepared with PLA and PLGA, by either entrapment within the particles or adsorption onto the surface. The model protein antigens used in this work were mainly tetanus toxoid (TT), bovine serum albumin (BSA) and γ-globulins.In vitro investigations included the study of physicochemical properties of the particulate carriers as well as the assessment of stability of the antigen molecules throughout the formulation procedures. Good loading efficiencies were obtained with both formulation techniques, which did not affect the immunogenicity of the antigens studied. The influence of the surfactant employed on the microspheres' surface properties was demonstrated as well as its implications on the adsorption of proteins. Preparations containing protein adsorbed were shown to be slightly more hydrophobic than empty PLA microspheres, which can enhance the uptake of particles by the antigen presenting cells that prefer to associate with hydrophobic surfaces. Systemic and mucosal immune responses induced upon nasal, oral and intramuscular administration have been assessed and, when appropriate, compared with the most widely used vaccine adjuvant, aluminium hydroxide. The results indicate that association of TT with PLA microspheres through microencapsulation or adsorption procedures led to an enhancement of specific mucosal IgA and IgG and systemic IgG responses to the mucosal delivered antigens. Particularly, nasal administration of TT produced significantly higher serum levels of specific IgG in test animals, as compared to control groups, suggesting that this is a potential route for vaccination. This implies the uptake and transfer of particles through the nasal mucosa, which was further demonstrated by the presence in the blood stream of latex particles as early as 10 min after nasal administration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/aims To investigate ethnic differences in retinal vascular function and their relationship to traditional risk indicators for cardiovascular disease (CVD). Methods A total of 90 normoglycaemic subjects (45 South Asian (SA) and 45 age- and gender-matched white Europeans (WEs)) were recruited for the present study. Retinal vessel reactivity to flickering light was assessed by means of the dynamic retinal vessel analyser according to a modified protocol. Fasting plasma glucose, triglycerides (TG), total, LDL and HDL cholesterol were also measured in all individuals. Results SA individuals showed higher fasting triglyceride (p=0.001) and lower HDL levels (p=0.007), leading to a higher TG:HDL-C ratio (p=0.001) than age-matched WE subjects. Additionally, in SAs, the retinal arterial reaction time in response to flicker stimulation was significantly longer in the last flicker cycle than in the WEs (p=0.039), and this change correlated positively with measured plasma TG levels (r=0.60; p=0.01). No such relationship was observed in the WEs (p>0.05). Conclusion Even in the absence of overt vascular disease, in otherwise healthy SAs there are potential signs of retinal vascular function impairment that correlates with established plasma markers for CVD risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) incorporating the glycolipid trehalose 6,6-dibehenate (TDB) forms a promising liposomal vaccine adjuvant. To be exploited as effective subunit vaccine delivery systems, the physicochemical characteristics of liposomes were studied in detail and correlated with their effectiveness in vivo, in an attempt to elucidate key aspects controlling their efficacy. This research took the previously optimised DDA-TDB system as a foundation for a range of formulations incorporating additional lipids of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), by incrementally replacing the cationic content within DDA-TDB or reducing the total DDA-TDB dose upon its substitution, to ascertain the role of DDA and the effect of DDA-TDB concentration in influencing the resultant immunological performance upon delivery of the novel subunit TB vaccine, Ag85B–ESAT-6-Rv2660c (H56 vaccine). With the aim of using the DPPC based systems for pulmonary vaccine delivery and the DSPC systems for application via the intramuscular route, initial work focused on physicochemical characterisation of the systems with incorporation of DPPC or DSPC displaying comparable physical stability, morphological structure and levels of antigen retention to that of DDA-TDB. Thermodynamic analysis was also conducted to detect main phase transition temperatures and subsequent in vitro cell culture studies demonstrated a favourable reduction in cytotoxicity, stimulation of phagocytic activity and macrophage activation in response to the proposed liposomal immunoadjuvants. Immunisation of mice with H56 vaccine via the proposed liposomal adjuvants showed that DDA was an important factor in mediating resultant immune responses, with partial replacement or substitution of DDA-TDB stimulating Th1 type cellular immunity characterised by elevated levels of IgG2b antibodies and IFN-? and IL-2 cytokines, essential for providing protective efficacy against TB. Upon increased DSPC content within the formulation, either by DDA replacement or reduction of DDA and TDB, responses were skewed towards Th2 type immunity with reduced IgG2b antibody levels and elevated IL-5 and IL-10 cytokine production, as resultant immunological responses were independent of liposomal zeta potential. The role of the cationic DDA lipid and the effect of DDA-TDB concentration were appreciated as the proposed liposomal formulations elicited antigen specific antibody and cellular immune responses, demonstrating the potential of cationic liposomes to be utilised as adjuvants for subunit vaccine delivery. Furthermore, the promising capability of the novel H56 vaccine candidate in eliciting protection against TB was apparent in a mouse model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triglyceride concentrations and endotoxemia