26 resultados para Interpolation variance

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is aimed primarily at eye care practitioners who are undertaking advanced clinical research, and who wish to apply analysis of variance (ANOVA) to their data. ANOVA is a data analysis method of great utility and flexibility. This article describes why and how ANOVA was developed, the basic logic which underlies the method and the assumptions that the method makes for it to be validly applied to data from clinical experiments in optometry. The application of the method to the analysis of a simple data set is then described. In addition, the methods available for making planned comparisons between treatment means and for making post hoc tests are evaluated. The problem of determining the number of replicates or patients required in a given experimental situation is also discussed. Copyright (C) 2000 The College of Optometrists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many Environmental Information Systems the actual observations arise from a discrete monitoring network which might be rather heterogeneous in both location and types of measurements made. In this paper we describe the architecture and infrastructure for a system, developed as part of the EU FP6 funded INTAMAP project, to provide a service oriented solution that allows the construction of an interoperable, automatic, interpolation system. This system will be based on the Open Geospatial Consortium’s Web Feature Service (WFS) standard. The essence of our approach is to extend the GML3.1 observation feature to include information about the sensor using SensorML, and to further extend this to incorporate observation error characteristics. Our extended WFS will accept observations, and will store them in a database. The observations will be passed to our R-based interpolation server, which will use a range of methods, including a novel sparse, sequential kriging method (only briefly described here) to produce an internal representation of the interpolated field resulting from the observations currently uploaded to the system. The extended WFS will then accept queries, such as ‘What is the probability distribution of the desired variable at a given point’, ‘What is the mean value over a given region’, or ‘What is the probability of exceeding a certain threshold at a given location’. To support information-rich transfer of complex and uncertain predictions we are developing schema to represent probabilistic results in a GML3.1 (object-property) style. The system will also offer more easily accessible Web Map Service and Web Coverage Service interfaces to allow users to access the system at the level of complexity they require for their specific application. Such a system will offer a very valuable contribution to the next generation of Environmental Information Systems in the context of real time mapping for monitoring and security, particularly for systems that employ a service oriented architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of variance (ANOVA) is the most efficient method available for the analysis of experimental data. Analysis of variance is a method of considerable complexity and subtlety, with many different variations, each of which applies in a particular experimental context. Hence, it is possible to apply the wrong type of ANOVA to data and, therefore, to draw an erroneous conclusion from an experiment. This article reviews the types of ANOVA most likely to arise in clinical experiments in optometry including the one-way ANOVA ('fixed' and 'random effect' models), two-way ANOVA in randomised blocks, three-way ANOVA, and factorial experimental designs (including the varieties known as 'split-plot' and 'repeated measures'). For each ANOVA, the appropriate experimental design is described, a statistical model is formulated, and the advantages and limitations of each type of design discussed. In addition, the problems of non-conformity to the statistical model and determination of the number of replications are considered. © 2002 The College of Optometrists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To carry out an analysis of variance, several assumptions are made about the nature of the experimental data which have to be at least approximately true for the tests to be valid. One of the most important of these assumptions is that a measured quantity must be a parametric variable, i.e., a member of a normally distributed population. If the data are not normally distributed, then one method of approach is to transform the data to a different scale so that the new variable is more likely to be normally distributed. An alternative method, however, is to use a non-parametric analysis of variance. There are a limited number of such tests available but two useful tests are described in this Statnote, viz., the Kruskal-Wallis test and Friedmann’s analysis of variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two-way design has been variously described as a matched-sample F-test, a simple within-subjects ANOVA, a one-way within-groups ANOVA, a simple correlated-groups ANOVA, and a one-factor repeated measures design! This confusion of terminology is likely to lead to problems in correctly identifying this analysis within commercially available software. The essential feature of the design is that each treatment is allocated by randomization to one experimental unit within each group or block. The block may be a plot of land, a single occasion in which the experiment was performed, or a human subject. The ‘blocking’ is designed to remove an aspect of the error variation and increase the ‘power’ of the experiment. If there is no significant source of variation associated with the ‘blocking’ then there is a disadvantage to the two-way design because there is a reduction in the DF of the error term compared with a fully randomised design thus reducing the ‘power’ of the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an alternative model of the 1-way ANOVA called the 'random effects' model or ‘nested’ design in which the objective is not to test specific effects but to estimate the degree of variation of a particular measurement and to compare different sources of variation that influence the measurement in space and/or time. The most important statistics from a random effects model are the components of variance which estimate the variance associated with each of the sources of variation influencing a measurement. The nested design is particularly useful in preliminary experiments designed to estimate different sources of variation and in the planning of appropriate sampling strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments combining different groups or factors are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the number of replications required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the degrees of freedom (DF) of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than simply the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for each error term of the ANOVA. Finally, in a factorial experiment, it is important to define the design of the experiment in detail because this determines the appropriate type of ANOVA. We will discuss some of the common variations of factorial ANOVA in future statnotes. If there is doubt about which ANOVA to use, the researcher should seek advice from a statistician with experience of research in applied microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In some experimental situations, the factors may not be equivalent to each other and replicates cannot be assigned at random to all treatment combinations. A common case, called a ‘split-plot design’, arises when one factor can be considered to be a major factor and the other a minor factor. Investigators need to be able to distinguish a split-plot design from a fully randomized design as it is a common mistake for researchers to analyse a split-plot design as if it were a fully randomised factorial experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments combining different groups or factors and which use ANOVA are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the sample size required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the degrees of freedom (DF) of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for the error term of the ANOVA testing effects of particular interest. Finally, it is important to always consider the design of the experiment because this determines the appropriate ANOVA to use. Hence, it is necessary to be able to identify the different forms of ANOVA appropriate to different experimental designs and to recognise when a design is a split-plot or incorporates a repeated measure. If there is any doubt about which ANOVA to use in a specific circumstance, the researcher should seek advice from a statistician with experience of research in applied microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments combining different groups or factors and which use ANOVA are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the number of replications required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the DF of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for each error term of the ANOVA. Finally, it is important to consider the design of the experiment because this determines the appropriate ANOVA to use. Some of the most common experimental designs used in the biosciences and their relevant ANOVAs are discussed by. If there is doubt about which ANOVA to use, the researcher should seek advice from a statistician with experience of research in applied microbiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In any investigation in optometry involving more that two treatment or patient groups, an investigator should be using ANOVA to analyse the results assuming that the data conform reasonably well to the assumptions of the analysis. Ideally, specific null hypotheses should be built into the experiment from the start so that the treatments variation can be partitioned to test these effects directly. If 'post-hoc' tests are used, then an experimenter should examine the degree of protection offered by the test against the possibilities of making either a type 1 or a type 2 error. All experimenters should be aware of the complexity of ANOVA. The present article describes only one common form of the analysis, viz., that which applies to a single classification of the treatments in a randomised design. There are many different forms of the analysis each of which is appropriate to the analysis of a specific experimental design. The uses of some of the most common forms of ANOVA in optometry have been described in a further article. If in any doubt, an investigator should consult a statistician with experience of the analysis of experiments in optometry since once embarked upon an experiment with an unsuitable design, there may be little that a statistician can do to help.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The key to the correct application of ANOVA is careful experimental design and matching the correct analysis to that design. The following points should therefore, be considered before designing any experiment: 1. In a single factor design, ensure that the factor is identified as a 'fixed' or 'random effect' factor. 2. In more complex designs, with more than one factor, there may be a mixture of fixed and random effect factors present, so ensure that each factor is clearly identified. 3. Where replicates can be grouped or blocked, the advantages of a randomised blocks design should be considered. There should be evidence, however, that blocking can sufficiently reduce the error variation to counter the loss of DF compared with a randomised design. 4. Where different treatments are applied sequentially to a patient, the advantages of a three-way design in which the different orders of the treatments are included as an 'effect' should be considered. 5. Combining different factors to make a more efficient experiment and to measure possible factor interactions should always be considered. 6. The effect of 'internal replication' should be taken into account in a factorial design in deciding the number of replications to be used. Where possible, each error term of the ANOVA should have at least 15 DF. 7. Consider carefully whether a particular factorial design can be considered to be a split-plot or a repeated measures design. If such a design is appropriate, consider how to continue the analysis bearing in mind the problem of using post hoc tests in this situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential framework for inference in such projected processes is presented, where the observations are considered one at a time. We introduce a C++ library for carrying out such projected, sequential estimation which adds several novel features. In particular we have incorporated the ability to use a generic observation operator, or sensor model, to permit data fusion. We can also cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the variogram parameters is based on maximum likelihood estimation. We illustrate the projected sequential method in application to synthetic and real data sets. We discuss the software implementation and suggest possible future extensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interoperable web processing service (WPS) for the automatic interpolation of environmental data has been developed in the frame of the INTAMAP project. In order to assess the performance of the interpolation method implemented, a validation WPS has also been developed. This validation WPS can be used to perform leave one out and K-fold cross validation: a full dataset is submitted and a range of validation statistics and diagnostic plots (e.g. histograms, variogram of residuals, mean errors) is received in return. This paper presents the architecture of the validation WPS and a case study is used to briefly illustrate its use in practice. We conclude with a discussion on the current limitations of the system and make proposals for further developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTAMAP is a web processing service for the automatic interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the open geospatial consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an open source solution. The system couples the 52-North web processing service, accepting data in the form of an observations and measurements (O&M) document with a computing back-end realized in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a new markup language to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropies and extreme values. In the light of the INTAMAP experience, we discuss the lessons learnt.