6 resultados para Interpolation and function approximation (numerical analysis)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simplified (without phase modulator) scheme of a black box optical regenerator is proposed, where an appropriate nonlinear propagation is used to enhance regeneration. Applying semi-theoretical models the authors optimise and demonstrate feasibility of error-free long distance transmission at 40 Gbit/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a radial basis function based extension to a recently proposed variational algorithm for approximate inference for diffusion processes. Inference, for state and in particular (hyper-) parameters, in diffusion processes is a challenging and crucial task. We show that the new radial basis function approximation based algorithm converges to the original algorithm and has beneficial characteristics when estimating (hyper-)parameters. We validate our new approach on a nonlinear double well potential dynamical system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidation and S-nitrosylation of cysteinyl thiols (Cys-SH) to sulfenic (Cys-SOH), sulfinic (Cys-SO2H), sulfonic acids (Cys-SO3H), disulphides and S-nitrosothiols are suggested as important post-translational modifications that can activate or deactivate the function of many proteins. Non-enzymatic post-translational modifications to cysteinyl thiols have been implicated in a wide variety of physiological and pathophysiological states but have been difficult to monitor in a physiological setting because of a lack of experimental tools. The purpose of this review is to bring together the approaches that have been developed for stably trapping cysteine either in its reduced or oxidised forms for enrichment and or subsequent mass spectrometric analysis. These tools are providing insight into potential targets for post-translational modifications to cysteine modification in vivo. This article is part of a Special Issue entitled: Special Issue: Posttranslational Protein modifications in biology and Medicine. © 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the present study, we report the first solubilization and purification of a functional GPCR [human adenosine A2A receptor (A2AR)], in the total absence of detergent at any stage, by exploiting spontaneous encapsulation by styrene maleic acid (SMA) co-polymer direct from the membrane into a nanoscale SMA lipid particle (SMALP). Furthermore, the A2AR-SMALP, generated from yeast (Pichia pastoris) or mammalian cells, exhibited increased thermostability (∼5°C) compared with detergent [DDM (n-dodecyl-β-D-maltopyranoside)]-solubilized A2AR controls. The A2AR-SMALP was also stable when stored for prolonged periods at 4°C and was resistant to multiple freeze-thaw cycles, in marked contrast with the detergent-solubilized receptor. These properties establish the potential for using GPCR-SMALP in receptor-based drug discovery assays. Moreover, in contrast with nanodiscs stabilized by scaffold proteins, the non-proteinaceous nature of the SMA polymer allowed unobscured biophysical characterization of the embedded receptor. Consequently, CD spectroscopy was used to relate changes in secondary structure to loss of ligand binding ([3H]ZM241385) capability. SMALP-solubilization of GPCRs, retaining the annular lipid environment, will enable a wide range of therapeutic targets to be prepared in native-like state to aid drug discovery and understanding of GPCR molecular mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiotocographic data provide physicians information about foetal development and permit to assess conditions such as foetal distress. An incorrect evaluation of the foetal status can be of course very dangerous. To improve interpretation of cardiotocographic recordings, great interest has been dedicated to foetal heart rate variability spectral analysis. It is worth reminding, however, that foetal heart rate is intrinsically an uneven series, so in order to produce an evenly sampled series a zero-order, linear or cubic spline interpolation can be employed. This is not suitable for frequency analyses because interpolation introduces alterations in the foetal heart rate power spectrum. In particular, interpolation process can produce alterations of the power spectral density that, for example, affects the estimation of the sympatho-vagal balance (computed as low-frequency/high-frequency ratio), which represents an important clinical parameter. In order to estimate the frequency spectrum alterations of the foetal heart rate variability signal due to interpolation and cardiotocographic storage rates, in this work, we simulated uneven foetal heart rate series with set characteristics, their evenly spaced versions (with different orders of interpolation and storage rates) and computed the sympatho-vagal balance values by power spectral density. For power spectral density estimation, we chose the Lomb method, as suggested by other authors to study the uneven heart rate series in adults. Summarising, the obtained results show that the evaluation of SVB values on the evenly spaced FHR series provides its overestimation due to the interpolation process and to the storage rate. However, cubic spline interpolation produces more robust and accurate results. © 2010 Elsevier Ltd. All rights reserved.