4 resultados para Internet Things openHAB Smart Home Automation
em Aston University Research Archive
Resumo:
Self-adaptive systems have the capability to autonomously modify their behavior at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and environmental monitoring systems. While a few techniques have been developed to support the monitoring and analysis of requirements for adaptive systems, limited attention has been paid to the actual creation and specification of requirements of self-adaptive systems. As a result, self-adaptivity is often constructed in an ad-hoc manner. In order to support the rigorous specification of adaptive systems requirements, this paper introduces RELAX, a new requirements language for self-adaptive systems that explicitly addresses uncertainty inherent in adaptive systems. We present the formal semantics for RELAX in terms of fuzzy logic, thus enabling a rigorous treatment of requirements that include uncertainty. RELAX enables developers to identify uncertainty in the requirements, thereby facilitating the design of systems that are, by definition, more flexible and amenable to adaptation in a systematic fashion. We illustrate the use of RELAX on smart home applications, including an adaptive assisted living system.
Resumo:
Self-adaptive systems have the capability to autonomously modify their behaviour at run-time in response to changes in their environment. Self-adaptation is particularly necessary for applications that must run continuously, even under adverse conditions and changing requirements; sample domains include automotive systems, telecommunications, and environmental monitoring systems. While a few techniques have been developed to support the monitoring and analysis of requirements for adaptive systems, limited attention has been paid to the actual creation and specification of requirements of self-adaptive systems. As a result, self-adaptivity is often constructed in an ad-hoc manner. In this paper, we argue that a more rigorous treatment of requirements explicitly relating to self-adaptivity is needed and that, in particular, requirements languages for self-adaptive systems should include explicit constructs for specifying and dealing with the uncertainty inherent in self-adaptive systems. We present RELAX, a new requirements language for selfadaptive systems and illustrate it using examples from the smart home domain. © 2009 IEEE.
Resumo:
Sensing technology is a key enabler of the Internet of Things (IoT) and could produce huge volume data to contribute the Big Data paradigm. Modelling of sensing information is an important and challenging topic, which influences essentially the quality of smart city systems. In this paper, the author discusses the relevant technologies and information modelling in the context of smart city and especially reports the investigation of how to model sensing and location information in order to support smart city development.