4 resultados para Intensive therapy
em Aston University Research Archive
Resumo:
Background Atrial fibrillation (AF) patients with a high risk of stroke are recommended anticoagulation with warfarin. However, the benefit of warfarin is dependent upon time spent within the target therapeutic range (TTR) of their international normalised ratio (INR) (2.0 to 3.0). AF patients possess limited knowledge of their disease and warfarin treatment and this can impact on INR control. Education can improve patients' understanding of warfarin therapy and factors which affect INR control. Methods/Design Randomised controlled trial of an intensive educational intervention will consist of group sessions (between 2-8 patients) containing standardised information about the risks and benefits associated with OAC therapy, lifestyle interactions and the importance of monitoring and control of their International Normalised Ratio (INR). Information will be presented within an 'expert-patient' focussed DVD, revised educational booklet and patient worksheets. 200 warfarin-naïve patients who are eligible for warfarin will be randomised to either the intervention or usual care groups. All patients must have ECG-documented AF and be eligible for warfarin (according to the NICE AF guidelines). Exclusion criteria include: aged < 18 years old, contraindication(s) to warfarin, history of warfarin USE, valvular heart disease, cognitive impairment, are unable to speak/read English and disease likely to cause death within 12 months. Primary endpoint is time spent in TTR. Secondary endpoints include measures of quality of life (AF-QoL-18), anxiety and depression (HADS), knowledge of AF and anticoagulation, beliefs about medication (BMQ) and illness representations (IPQ-R). Clinical outcomes, including bleeding, stroke and interruption to anticoagulation will be recorded. All outcome measures will be assessed at baseline and 1, 2, 6 and 12 months post-intervention. Discussion More data is needed on the clinical benefit of educational intervention with AF patients receiving warfarin. Trial registration ISRCTN93952605
Resumo:
here is an increasing number of reports of propylene glycol (PG) toxicity in the literature, regardless of its inclusion on the Generally Recognized as Safe List (GRAS).1 PG is an excipient used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Method A snapshot of 50 PICU patients oral or intravenous medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists' opinions on PG intake was sought via e-survey. Results The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52%) were parenteral formulations. Median weight of the patients was 5.5 kg (range 2–50 kg), ages ranged from 1 day to 13 years of age. Eleven of the patients were classed as renally impaired (defined as 1.5 times the baseline creatinine). Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received at least one prescription containing PG and 29/38 of these patients were receiving formulations that contained excipients that may have competed with the metabolic pathways of PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day. Total intake was inconclusive for 2 patients due to a of lack of availability of information from the manufacturer; these formulations were licensed but used in for off-label indications. Five commonly used formulations contributed to higher intakes of PG, namely co-trimoxazole, dexamethasone, potassium chloride, dipyridamole and phenobarbitone. Lactate levels were difficult to interpret due to the underlying conditions of the patients. One of the sixteen intensivist was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions Certain formulations used on PICU can considerably increase PG exposure to patients. Due to a lack of awareness of PG content, these should be highlighted to the clinician to assist with making informed decisions regarding risks versus benefits in continuing that drug, route of administration or formulation.
Resumo:
There is an increasing number of reports of propylene glycol (PG) toxicity in the literature, regardless of its inclusion on the Generally Recognized as Safe List (GRAS).1 PG is an excipient used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Method A snapshot of 50 PICU patients oral or intravenous medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists' opinions on PG intake was sought via e-survey. Results The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52%) were parenteral formulations. Median weight of the patients was 5.5 kg (range 2–50 kg), ages ranged from 1 day to 13 years of age. Eleven of the patients were classed as renally impaired (defined as 1.5 times the baseline creatinine). Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received at least one prescription containing PG and 29/38 of these patients were receiving formulations that contained excipients that may have competed with the metabolic pathways of PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day. Total intake was inconclusive for 2 patients due to a of lack of availability of information from the manufacturer; these formulations were licensed but used in for off-label indications. Five commonly used formulations contributed to higher intakes of PG, namely co-trimoxazole, dexamethasone, potassium chloride, dipyridamole and phenobarbitone. Lactate levels were difficult to interpret due to the underlying conditions of the patients. One of the sixteen intensivist was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions Certain formulations used on PICU can considerably increase PG exposure to patients. Due to a lack of awareness of PG content, these should be highlighted to the clinician to assist with making informed decisions regarding risks versus benefits in continuing that drug, route of administration or formulation.
Resumo:
Background: There are increasing reports of propylene glycol (PG) toxicity, which is used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Methods: A snapshot of 50 patients’ medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists opinions on PG intake was sought via e-survey. Results: The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52 %) were parenteral formulations. Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received drugs with PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day, with 29/38 receiving formulations with concomitant pathway competing excipients. The total amount could not be quantified in two cases due to lack of availability of information from the manufacturer. Four commonly used formulations contributed to higher intakes of PG. Only 1/16intensivists was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions: Certain formulations used on PICU can considerably increase PG exposure to patients. These should be highlighted to the clinician to make an informed decision regarding risks versus benefits in continuing that drug or formulation.