2 resultados para Intensity Differences
em Aston University Research Archive
Resumo:
Excessive consumption of dietary fat is acknowledged to be a widespread problem linked to a range of medical conditions. Despite this, little is known about the specific sensory appeal held by fats and no previous published research exists concerning human perception of non-textural taste qualities in fats. This research aimed to address whether a taste component can be found in sensory perception of pure fats. It also examined whether individual differences existed in human taste responses to fat, using both aggregated data analysis methods and multidimensional scaling. Results indicated that individuals were able to detect both the primary taste qualities of sweet, salty, sour and bitter in pure processed oils and reliably ascribe their own individually-generated taste labels, suggested that a taste component may be present in human responses to fat. Individual variation appeared to exist, both in the perception of given taste qualities and in perceived intensity and preferences. A number of factors were examined in relation to such individual differences in taste perception, including age, gender, genetic sensitivity to 6-n-propylthiouracil, body mass, dietary preferences and intake, dieting behaviours and restraint. Results revealed that, to varying extents, gender, age, sensitivity to 6-n-propylthiouracil, dietary preferences, habitual dietary intake and restraint all appeared to be related to individual variation in taste responses to fat. However, in general, these differences appeared to exist in the form of differing preferences and levels of intensity with which taste qualities detected in fat were perceived, as opposed to the perception of specific taste qualities being associated with given traits or states. Equally, each of these factors appeared to exert only a limited influence upon variation in sensory responses and thus the potential for using taste responses to fats as a marker for issues such as over-consumption, obesity or eating disorder is at present limited.
Resumo:
Transcranial magnetic stimulation (TMS) studies indicate that the observation of other people's actions influences the excitability of the observer's motor system. Motor evoked potential (MEP) amplitudes typically increase in muscles which would be active during the execution of the observed action. This 'motor resonance' effect is thought to result from activity in mirror neuron regions, which enhance the excitability of the primary motor cortex (M1) via cortico-cortical pathways. The importance of TMS intensity has not yet been recognised in this area of research. Low-intensity TMS predominately activates corticospinal neurons indirectly, whereas high-intensity TMS can directly activate corticospinal axons. This indicates that motor resonance effects should be more prominent when using low-intensity TMS. A related issue is that TMS is typically applied over a single optimal scalp position (OSP) to simultaneously elicit MEPs from several muscles. Whether this confounds results, due to differences in the manner that TMS activates spatially separate cortical representations, has not yet been explored. In the current study, MEP amplitudes, resulting from single-pulse TMS applied over M1, were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles during the observation of simple finger abductions. We tested if the TMS intensity (110% vs. 130% resting motor threshold) or stimulating position (FDI-OSP vs. ADM-OSP) influenced the magnitude of the motor resonance effects. Results showed that the MEP facilitation recorded in the FDI muscle during the observation of index-finger abductions was only detected using low-intensity TMS. In contrast, changes in the OSP had a negligible effect on the presence of motor resonance effects in either the FDI or ADM muscles. These findings support the hypothesis that MN activity enhances M1 excitability via cortico-cortical pathways and highlight a methodological framework by which the neural underpinnings of action observation can be further explored. © 2013 Loporto et al.