2 resultados para Intelligent environments

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intelligent environments aim at supporting the user in executing her everyday tasks, e.g. by guiding her through a maintenance or cooking procedure. This requires a machine processable representation of the tasks for which workflows have proven an efficient means. The increasing number of available sensors in intelligent environments can facilitate the execution of workflows. The sensors can help to recognize when a user has finished a step in the workflow and thus to automatically proceed to the next step. This can heavily reduce the amount of required user interaction. However, manually specifying the conditions for triggering the next step in a workflow is very cumbersome and almost impossible for environments which are not known at design time. In this paper, we present a novel approach for learning and adapting these conditions from observation. We show that the learned conditions can even outperform the quality as conditions manually specified by workflow experts. Thus, the presented approach is very well suited for automatically adapting workflows in intelligent environments and can in that way increase the efficiency of the workflow execution. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agents inhabiting large scale environments are faced with the problem of generating maps by which they can navigate. One solution to this problem is to use probabilistic roadmaps which rely on selecting and connecting a set of points that describe the interconnectivity of free space. However, the time required to generate these maps can be prohibitive, and agents do not typically know the environment in advance. In this paper we show that the optimal combination of different point selection methods used to create the map is dependent on the environment, no point selection method dominates. This motivates a novel self-adaptive approach for an agent to combine several point selection methods. The success rate of our approach is comparable to the state of the art and the generation cost is substantially reduced. Self-adaptation therefore enables a more efficient use of the agent's resources. Results are presented for both a set of archetypal scenarios and large scale virtual environments based in Second Life, representing real locations in London.