9 resultados para Intelligent agent
em Aston University Research Archive
Resumo:
An intelligent agent, operating in an external world which cannot be fully described in its internal world model, must be able to monitor the success of a previously generated plan and to respond to any errors which may have occurred. The process of error analysis requires the ability to reason in an expert fashion about time and about processes occurring in the world. Reasoning about time is needed to deal with causality. Reasoning about processes is needed since the direct effects of a plan action can be completely specified when the plan is generated, but the indirect effects cannot. For example, the action `open tap' leads with certainty to `tap open', whereas whether there will be a fluid flow and how long it might last is more difficult to predict. The majority of existing planning systems cannot handle these kinds of reasoning, thus limiting their usefulness. This thesis argues that both kinds of reasoning require a complex internal representation of the world. The use of Qualitative Process Theory and an interval-based representation of time are proposed as a representation scheme for such a world model. The planning system which was constructed has been tested on a set of realistic planning scenarios. It is shown that even simple planning problems, such as making a cup of coffee, require extensive reasoning if they are to be carried out successfully. The final Chapter concludes that the planning system described does allow the correct solution of planning problems involving complex side effects, which planners up to now have been unable to solve.
Resumo:
In-Motes is a mobile agent middleware that generates an intelligent framework for deploying applications in Wireless Sensor Networks (WSNs). In-Motes is based on the injection of mobile agents into the network that can migrate or clone following specific rules and performing application specific tasks. By doing so, each mote is given a certain degree of perception, cognition and control, forming the basis for its intelligence. Our middleware incorporates technologies such as Linda-like tuplespaces and federated system architecture in order to obtain a high degree of collaboration and coordination for the agent society. A set of behavioral rules inspired by a community of bacterial strains is also generated as the means for robustness of the WSN. In this paper, we present In-Motes and provide a detailed evaluation of its implementation for MICA2 motes.
Resumo:
This paper details the development and evaluation of AstonTAC, an energy broker that successfully participated in the 2012 Power Trading Agent Competition (Power TAC). AstonTAC buys electrical energy from the wholesale market and sells it in the retail market. The main focus of the paper is on the broker’s bidding strategy in the wholesale market. In particular, it employs Markov Decision Processes (MDP) to purchase energy at low prices in a day-ahead power wholesale market, and keeps energy supply and demand balanced. Moreover, we explain how the agent uses Non-Homogeneous Hidden Markov Model (NHHMM) to forecast energy demand and price. An evaluation and analysis of the 2012 Power TAC finals show that AstonTAC is the only agent that can buy energy at low price in the wholesale market and keep energy imbalance low.
Resumo:
To meet changing needs of customers and to survive in the increasingly globalised and competitive environment, it is necessary for companies to equip themselves with intelligent tools, thereby enabling managerial levels to use the tactical decision in a better way. However, the implementation of an intelligent system is always a challenge in Small- and Medium-sized Enterprises (SMEs). Therefore, a new and simple approach with 'process rethinking' ability is proposed to generate ongoing process improvements over time. In this paper, a roadmap of the development of an agent-based information system is described. A case example has also been provided to show how the system can assist non-specialists, for example, managers and engineers to make right decisions for a continual process improvement. Copyright © 2006 Inderscience Enterprises Ltd.
Resumo:
From a manufacturing perspective, the efficiency of manufacturing operations (such as process planning and production scheduling) are the key element for enhancing manufacturing competence. Process planning and production scheduling functions have been traditionally treated as two separate activities, and have resulted in a range of inefficiencies. These include infeasible process plans, non-available/overloaded resources, high production costs, long production lead times, and so on. Above all, it is unlikely that the dynamic changes can be efficiently dealt with. Despite much research has been conducted to integrate process planning and production scheduling to generate optimised solutions to improve manufacturing efficiency, there is still a gap to achieve the competence required for the current global competitive market. In this research, the concept of multi-agent system (MAS) is adopted as a means to address the aforementioned gap. A MAS consists of a collection of intelligent autonomous agents able to solve complex problems. These agents possess their individual objectives and interact with each other to fulfil the global goal. This paper describes a novel use of an autonomous agent system to facilitate the integration of process planning and production scheduling functions to cope with unpredictable demands, in terms of uncertainties in product mix and demand pattern. The novelty lies with the currency-based iterative agent bidding mechanism to allow process planning and production scheduling options to be evaluated simultaneously, so as to search for an optimised, cost-effective solution. This agent based system aims to achieve manufacturing competence by means of enhancing the flexibility and agility of manufacturing enterprises.
Resumo:
Multi-agent systems are complex systems comprised of multiple intelligent agents that act either independently or in cooperation with one another. Agent-based modelling is a method for studying complex systems like economies, societies, ecologies etc. Due to their complexity, very often mathematical analysis is limited in its ability to analyse such systems. In this case, agent-based modelling offers a practical, constructive method of analysis. The objective of this book is to shed light on some emergent properties of multi-agent systems. The authors focus their investigation on the effect of knowledge exchange on the convergence of complex, multi-agent systems.
Resumo:
Agent-based technology is playing an increasingly important role in today’s economy. Usually a multi-agent system is needed to model an economic system such as a market system, in which heterogeneous trading agents interact with each other autonomously. Two questions often need to be answered regarding such systems: 1) How to design an interacting mechanism that facilitates efficient resource allocation among usually self-interested trading agents? 2) How to design an effective strategy in some specific market mechanisms for an agent to maximise its economic returns? For automated market systems, auction is the most popular mechanism to solve resource allocation problems among their participants. However, auction comes in hundreds of different formats, in which some are better than others in terms of not only the allocative efficiency but also other properties e.g., whether it generates high revenue for the auctioneer, whether it induces stable behaviour of the bidders. In addition, different strategies result in very different performance under the same auction rules. With this background, we are inevitably intrigued to investigate auction mechanism and strategy designs for agent-based economics. The international Trading Agent Competition (TAC) Ad Auction (AA) competition provides a very useful platform to develop and test agent strategies in Generalised Second Price auction (GSP). AstonTAC, the runner-up of TAC AA 2009, is a successful advertiser agent designed for GSP-based keyword auction. In particular, AstonTAC generates adaptive bid prices according to the Market-based Value Per Click and selects a set of keyword queries with highest expected profit to bid on to maximise its expected profit under the limit of conversion capacity. Through evaluation experiments, we show that AstonTAC performs well and stably not only in the competition but also across a broad range of environments. The TAC CAT tournament provides an environment for investigating the optimal design of mechanisms for double auction markets. AstonCAT-Plus is the post-tournament version of the specialist developed for CAT 2010. In our experiments, AstonCAT-Plus not only outperforms most specialist agents designed by other institutions but also achieves high allocative efficiencies, transaction success rates and average trader profits. Moreover, we reveal some insights of the CAT: 1) successful markets should maintain a stable and high market share of intra-marginal traders; 2) a specialist’s performance is dependent on the distribution of trading strategies. However, typical double auction models assume trading agents have a fixed trading direction of either buy or sell. With this limitation they cannot directly reflect the fact that traders in financial markets (the most popular application of double auction) decide their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Experiments are conducted under both dynamic and static settings of the continuous BDA market. We find that the allocative efficiency of a continuous BDA market mainly comes from rational selection of trading directions. Furthermore, we introduce a high-performance Kernel trading strategy in the BDA market which uses kernel probability density estimator built on historical transaction data to decide optimal order prices. Kernel trading strategy outperforms some popular intelligent double auction trading strategies including ZIP, GD and RE in the continuous BDA market by making the highest profit in static games and obtaining the best wealth in dynamic games.
Resumo:
Agents inhabiting large scale environments are faced with the problem of generating maps by which they can navigate. One solution to this problem is to use probabilistic roadmaps which rely on selecting and connecting a set of points that describe the interconnectivity of free space. However, the time required to generate these maps can be prohibitive, and agents do not typically know the environment in advance. In this paper we show that the optimal combination of different point selection methods used to create the map is dependent on the environment, no point selection method dominates. This motivates a novel self-adaptive approach for an agent to combine several point selection methods. The success rate of our approach is comparable to the state of the art and the generation cost is substantially reduced. Self-adaptation therefore enables a more efficient use of the agent's resources. Results are presented for both a set of archetypal scenarios and large scale virtual environments based in Second Life, representing real locations in London.