24 resultados para Integrated production
em Aston University Research Archive
Resumo:
This paper is based a major research project run by a team from the Innovation, Design and Operations Management Research Unit at the Aston Business School under SERC funding. International Computers Limited (!CL), the UK's largest indigenous manufacturer of mainframe computer products, was the main industrial collaborator in the research. During the period 1985-89 an integrated production system termed the "Modular Assembly Cascade'' was introduced to the Company's mainframe assembly plant at Ashton-under-Lyne near Manchester. Using a methodology primarily based upon 'participative observation', the researchers developed a model for analysing this manufacturing system design called "DRAMA". Following a critique of the existing literature on Manufacturing Strategy, this paper will describe the basic DRAMA model and its development from an industry specific design methodology to DRAMA II, a generic model for studying organizational decision processes in the design and implementation of production systems. From this, the potential contribution of the DRAMA model to the existing knowledge on the process of manufacturing system design will be apparent.
Resumo:
From a manufacturing perspective, the efficiency of manufacturing operations (such as process planning and production scheduling) are the key element for enhancing manufacturing competence. Process planning and production scheduling functions have been traditionally treated as two separate activities, and have resulted in a range of inefficiencies. These include infeasible process plans, non-available/overloaded resources, high production costs, long production lead times, and so on. Above all, it is unlikely that the dynamic changes can be efficiently dealt with. Despite much research has been conducted to integrate process planning and production scheduling to generate optimised solutions to improve manufacturing efficiency, there is still a gap to achieve the competence required for the current global competitive market. In this research, the concept of multi-agent system (MAS) is adopted as a means to address the aforementioned gap. A MAS consists of a collection of intelligent autonomous agents able to solve complex problems. These agents possess their individual objectives and interact with each other to fulfil the global goal. This paper describes a novel use of an autonomous agent system to facilitate the integration of process planning and production scheduling functions to cope with unpredictable demands, in terms of uncertainties in product mix and demand pattern. The novelty lies with the currency-based iterative agent bidding mechanism to allow process planning and production scheduling options to be evaluated simultaneously, so as to search for an optimised, cost-effective solution. This agent based system aims to achieve manufacturing competence by means of enhancing the flexibility and agility of manufacturing enterprises.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.
Resumo:
It is indisputable that printed circuit boards (PCBs) play a vital role in our daily lives. With the ever-increasing applications of PCBs, one of the crucial ways to increase a PCB manufacturer’s competitiveness in terms of operation efficiency is to minimize the production time so that the products can be introduced to the market sooner. Optimal Production Planning for PCB Assembly is the first book to focus on the optimization of the PCB assembly lines’ efficiency. This is done by: • integrating the component sequencing and the feeder arrangement problems together for both the pick-and-place machine and the chip shooter machine; • constructing mathematical models and developing an efficient and effective heuristic solution approach for the integrated problems for both types of placement machines, the line assignment problem, and the component allocation problem; and • developing a prototype of the PCB assembly planning system. The techniques proposed in Optimal Production Planning for PCB Assembly will enable process planners in the electronics manufacturing industry to improve the assembly line’s efficiency in their companies. Graduate students in operations research can familiarise themselves with the techniques and the applications of mathematical modeling after reading this advanced introduction to optimal production planning for PCB assembly.
Resumo:
This paper focuses on minimizing printed circuit board (PCB) assembly time for a chipshootermachine, which has a movable feeder carrier holding components, a movable X–Y table carrying a PCB, and a rotary turret with multiple assembly heads. The assembly time of the machine depends on two inter-related optimization problems: the component sequencing problem and the feeder arrangement problem. Nevertheless, they were often regarded as two individual problems and solved separately. This paper proposes two complete mathematical models for the integrated problem of the machine. The models are verified by two commercial packages. Finally, a hybrid genetic algorithm previously developed by the authors is presented to solve the model. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total assembly time.
Resumo:
Fast pyrolysis of biomass is a significant technology for producing pyrolysis liquids [also known as bio-oil], which contain a number of chemicals. The pyrolysis liquid can be used as a fuel, can be produced solely as a source of chemicals or can have some of the chemicals extracted and the residue used as a fuel. There were two primary objectives of this work. The first was to determine the fast pyrolysis conditions required to maximise the pyrolysis liquid yield from a number of biomass feedstocks. The second objective was to selectively increase the yield of certain chemicals in the pyrolysis liquid by pre-treatment of the feedstock prior to pyrolysis. For a particular biomass feedstock the pyrolysis liquid yield is affected by the reactor process parameters. It has been found that, providing the other process parameters are restricted to the values shown below, reactor temperature is the controlling parameter. The maximum pyrolysis liquid yield and the temperature at which it occurs has been found by a series of pyrolysis experiments over the temperature range 400-600°C. high heating rates > 1000°C/s; pyrolysis vapour residence times <2 seconds; pyrolysis vapour temperatures >400 but <500°C; rapid quenching of the product vapours. Pre-treatment techniques have been devised to modify the chemical composition and/or structure of the biomass in such a way as to influence the chemical composition of the pyrolysis liquid product. The pre-treatments were divided into two groups, those that remove material from the biomass and those which add material to the biomass. Component removal techniques have selectively increased the yield of levoglucosan from 2.45 to 18.58 mf wt.% [dry feedstock basis]. Additive techniques have selectively increased the yield of hydroxyacetaldehyde from 7.26 to 11.63 mf w.% [dry feedstock basis]. Techno-economic assessment has been carried out on an integrated levoglucosan production process [incorporating pre-treatment, pyrolysis and chemical extraction stages] to assess which method of chemical production is the more cost effective. It has been found that it is better to pre-treat the biomass in order to increase the yield of specific chemicals in the pyrolysis liquid and hence improve subsequent chemicals extraction.
Resumo:
This thesis presents a comparison of integrated biomass to electricity systems on the basis of their efficiency, capital cost and electricity production cost. Four systems are evaluated: combustion to raise steam for a steam cycle; atmospheric gasification to produce fuel gas for a dual fuel diesel engine; pressurised gasification to produce fuel gas for a gas turbine combined cycle; and fast pyrolysis to produce pyrolysis liquid for a dual fuel diesel engine. The feedstock in all cases is wood in chipped form. This is the first time that all three thermochemical conversion technologies have been compared in a single, consistent evaluation.The systems have been modelled from the transportation of the wood chips through pretreatment, thermochemical conversion and electricity generation. Equipment requirements during pretreatment are comprehensively modelled and include reception, storage, drying and communication. The de-coupling of the fast pyrolysis system is examined, where the fast pyrolysis and engine stages are carried out at separate locations. Relationships are also included to allow learning effects to be studied. The modelling is achieved through the use of multiple spreadsheets where each spreadsheet models part of the system in isolation and the spreadsheets are combined to give the cost and performance of a whole system.The use of the models has shown that on current costs the combustion system remains the most cost-effective generating route, despite its low efficiency. The novel systems only produce lower cost electricity if learning effects are included, implying that some sort of subsidy will be required during the early development of the gasification and fast pyrolysis systems to make them competitive with the established combustion approach. The use of decoupling in fast pyrolysis systems is a useful way of reducing system costs if electricity is required at several sites because• a single pyrolysis site can be used to supply all the generators, offering economies of scale at the conversion step. Overall, costs are much higher than conventional electricity generating costs for fossil fuels, due mainly to the small scales used. Biomass to electricity opportunities remain restricted to niche markets where electricity prices are high or feed costs are very low. It is highly recommended that further work examines possibilities for combined beat and power which is suitable for small scale systems and could increase revenues that could reduce electricity prices.
Resumo:
At present there is not a reliable vaccine against herpes virus. Viral protein vaccines as yet have proved unsuccessful to meet the challenge of raising an appropriate immune response. Cantab Pharmaceuticals has produced a virus vaccine that can undergo one round of replication in the recipient in order to produce a more specific immune reaction. This virus is called Disabled Infectious Single Cycle Herpes Simplex Virus (DISC HSV) which has been derived by deleting the essential gH gene from a type 2 herpes virus. This vaccine has been proven to be effective in animal studies. Existing methods for the purification of viruses rely on laboratory techniques and for vaccine production would be on a far too small a scale. There is therefore a need for new virus purification methods to be developed in order to meet these large scale needs. An integrated process for the manufacture of a purified recombinant DISC HSV is described. The process involves culture of complementing Vero (CR2) cells, virus infection and manufacture, virus harvesting and subsequent downstream processing. The identification of suitable growth parameters for the complementing cell line and optimal limes for both infection and harvest are addressed. Various traditional harvest methods were investigated and found not to be suitable for a scaled up process. A method of harvesting, that exploits the elution of cell associated viruses by the competitive binding of exogenous heparin to virus envelope gC proteins, is described and is shown to yield significantly less contaminated process streams than sonication or osmotic approaches that involve cell rupture (with> 10-fold less complementing cell protein). High concentrations of salt (>0.8M NaCl) exhibit the same effect, although the high osmotic strength ruptures cells and increase the contamination of the process stream. This same heparin-gC protein affinity interaction is also shown to provide an efficient adsorptive purification procedure for herpes viruses which avoids the need to pre-treat the harvest material, apart from clarification, prior to chromatography. Subsequent column eluates provide product fractions with a 100-fold increase in virus titre and low levels of complementing cell protein and DNA (0.05 pg protein/pfu and 1.2 x 104 pg DNA/pfu respectively).
Resumo:
Plasma or "dry" etching is an essential process for the production of modern microelectronic circuits. However, despite intensive research, many aspects of the etch process are not fully understood. The results of studies of the plasma etching of Si and Si02 in fluorine-containing discharges, and the complementary technique of plasma polymerisation are presented in this thesis. Optical emission spectroscopy with argon actinometry was used as the principle plasma diagnostic. Statistical experimental design was used to model and compare Si and Si02 etch rates in CF4 and SF6 discharges as a function of flow, pressure and power. Etch mechanisms m both systems, including the potential reduction of Si etch rates in CF4 due to fluorocarbon polymer formation, are discussed. Si etch rates in CF4 /SF6 mixtures were successfully accounted for by the models produced. Si etch rates in CF4/C2F6 and CHF3 as a function of the addition of oxygen-containing additives (02, N20 and CO2) are shown to be consistent with a simple competition between F, 0 and CFx species for Si surface sites. For the range of conditions studied, Si02 etch rates were not dependent on F-atom concentration, but the presence of fluorine was essential in order to achieve significant etch rates. The influence of a wide range of electrode materials on the etch rate of Si and Si02 in CF4 and CF4 /02 plasmas was studied. It was found that the Si etch rate in a CF4 plasma was considerably enhanced, relative to an anodised aluminium electrode, in the presence of soda glass or sodium or potassium "doped" quartz. The effect was even more pronounced in a CF4 /02 discharge. In the latter system lead and copper electrodes also enhanced the Si etch rate. These results could not be accounted for by a corresponding rise in atomic fluorine concentration. Three possible etch enhancement mechanisms are discussed. Fluorocarbon polymer deposition was studied, both because of its relevance to etch mechanisms and its intrinsic interest, as a function of fluorocarbon source gas (CF4, C2F6, C3F8 and CHF3), process time, RF power and percentage hydrogen addition. Gas phase concentrations of F, H and CF2 were measured by optical emission spectroscopy, and the resultant polymer structure determined by X-ray photoelectron spectroscopy and infrared spectroscopy. Thermal and electrical properties were measured also. Hydrogen additions are shown to have a dominant role in determining deposition rate and polymer composition. A qualitative description of the polymer growth mechanism is presented which accounts for both changes in growth rate and structure, and leads to an empirical deposition rate model.
Resumo:
In a certain automobile factory, batch-painting of the body types in colours is controlled by an allocation system. This tries to balance production with orders, whilst making optimally-sized batches of colours. Sequences of cars entering painting cannot be optimised for easy selection of colour and batch size. `Over-production' is not allowed, in order to reduce buffer stocks of unsold vehicles. Paint quality is degraded by random effects. This thesis describes a toolkit which supports IKBS in an object-centred formalism. The intended domain of use for the toolkit is flexible manufacturing. A sizeable application program was developed, using the toolkit, to test the validity of the IKBS approach in solving the real manufacturing problem above, for which an existing conventional program was already being used. A detailed statistical analysis of the operating circumstances of the program was made to evaluate the likely need for the more flexible type of program for which the toolkit was intended. The IKBS program captures the many disparate and conflicting constraints in the scheduling knowledge and emulates the behaviour of the program installed in the factory. In the factory system, many possible, newly-discovered, heuristics would be awkward to represent and it would be impossible to make many new extensions. The representation scheme is capable of admitting changes to the knowledge, relying on the inherent encapsulating properties of object-centres programming to protect and isolate data. The object-centred scheme is supported by an enhancement of the `C' programming language and runs under BSD 4.2 UNIX. The structuring technique, using objects, provides a mechanism for separating control of expression of rule-based knowledge from the knowledge itself and allowing explicit `contexts', within which appropriate expression of knowledge can be done. Facilities are provided for acquisition of knowledge in a consistent manner.
Resumo:
Computerised production control developments have concentrated on Manufacturing Resources Planning (MRP II) systems. The literature suggests however, that despite the massive investment in hardware, software and management education, successful implementation of such systems in manufacturing industries has proved difficult. This thesis reviews the development of production planning and control systems, in particular, investigates the causes of failures in implementing MRP/MRP II systems in industrial environments and argues that the centralised and top-down planning structure, as well as the routine operational methodology of such systems, is inherently prone to failure. The thesis reviews the control benefits of cellular manufacturing systems but concludes that in more dynamic manufacturing environments, techniques such as Kanban are inappropriate. The basic shortcomings of MRP II systems are highlighted and a new enhanced operational methodology based on distributed planning and control principles is introduced. Distributed Manufacturing Resources Planning (DMRP), was developed as a capacity sensitive production planning and control solution for cellular manufacturing environments. The system utilises cell based, independently operated MRP II systems, integrated into a plant-wide control system through a Local Area Network. The potential benefits of adopting the system in industrial environments is discussed and the results of computer simulation experiments to compare the performance of the DMRP system against the conventional MRP II systems presented. DMRP methodology is shown to offer significant potential advantages which include ease of implementation, cost effectiveness, capacity sensitivity, shorter manufacturing lead times, lower working in progress levels and improved customer service.
Resumo:
The right manufacturing technology at the right time can enable an organisation to produce products that are cheaper, better, and made faster than those of the competition. Paradoxically, the wrong technology, or even the right technology poorly implemented, can be disastrous. The decision process through which practitioners acquire manufacturing technologies can significantly impact on their eventual capabilities and performance. This complete process has unfortunately received limited attention in previous studies. Therefore, the work presented in this paper has investigated leading research and industrial practices to create a formal and rational decision process, and then evaluated this through an extended and in-depth case study of a manufacturing technology acquisition. An analysis of previous literature, industrial practices, and the resulting decision process are all presented in this paper.