2 resultados para Integrated inverters
em Aston University Research Archive
Resumo:
A new topology of the high frequency alternating current (HFAC) inverter bridge arm is proposed which comprises a coupled inductor, a switching device and an active clamp circuit. Based on it, new single-phase and threephase inverters are proposed and their operating states are analysed along with the traditional H-bridge inverter. Multiphase and multi-level isolated inverters are also developed using the HFAC bridge arm. Furthermore, based on the proposed HFAC, a front-end DC-DC converter is also developed for photovoltaic systems to demonstrate the application of the proposed HFAC converter. Simulation and experimental results from prototype converters are carried out to validate the proposed topologies which can be utilised widely in high frequency power conversion applications such as induction heating and wireless power transfer.
Resumo:
High-volume capacitance is required to buffer the power difference between the input and output ports in single-phase grid-connected photovoltaic inverters, which become an obstacle to high system efficiency and long device lifetime. Furthermore, total harmonic distortion becomes serious when the system runs into low power level. In this study, a comprehensive analysis is introduced for two-stage topology with the consideration of active power, DC-link (DCL) voltage, ripple and capacitance. This study proposed a comprehensive DCL voltage control strategy to minimise the DCL capacitance while maintaining a normal system operation. Furthermore, the proposed control strategy is flexible to be integrated with the pulse-skipping control that significantly improves the power quality at light power conditions. Since the proposed control strategy needs to vary DCL voltage, an active protection scheme is also introduced to prevent any voltage violation across the DCL. The proposed control strategy is evaluated by both simulation and experiments, whose results confirm the system effectiveness.