12 resultados para Inhomogeneity
em Aston University Research Archive
Resumo:
A semi-quantitative model is put forward elucidating the role of spatial inhomogeneity of charge carrier mobility in organic field-effect transistors. The model, based on electrostatic arguments, allows estimating the effective thickness of the conducting channel and its changes in function of source-drain and gate voltages. Local mobility gradients in the direction perpendicular to the insulator/semiconductor interface translate into voltage dependences of the average carrier mobility in the channel, resulting in positive or negative deviations of current-voltage characteristics from their expected shapes. The proposed effect supplements those described in the literature, i.e., density-dependent mobility of charge carriers, short-channel effects, and contribution of contact resistance.
Resumo:
The initial image-processing stages of visual cortex are well suited to a local (patchwise) analysis of the viewed scene. But the world's structures extend over space as textures and surfaces, suggesting the need for spatial integration. Most models of contrast vision fall shy of this process because (i) the weak area summation at detection threshold is attributed to probability summation (PS) and (ii) there is little or no advantage of area well above threshold. Both of these views are challenged here. First, it is shown that results at threshold are consistent with linear summation of contrast following retinal inhomogeneity, spatial filtering, nonlinear contrast transduction and multiple sources of additive Gaussian noise. We suggest that the suprathreshold loss of the area advantage in previous studies is due to a concomitant increase in suppression from the pedestal. To overcome this confound, a novel stimulus class is designed where: (i) the observer operates on a constant retinal area, (ii) the target area is controlled within this summation field, and (iii) the pedestal is fixed in size. Using this arrangement, substantial summation is found along the entire masking function, including the region of facilitation. Our analysis shows that PS and uncertainty cannot account for the results, and that suprathreshold summation of contrast extends over at least seven target cycles of grating. © 2007 The Royal Society.
Resumo:
Classical studies of area summation measure contrast detection thresholds as a function of grating diameter. Unfortunately, (i) this approach is compromised by retinal inhomogeneity and (ii) it potentially confounds summation of signal with summation of internal noise. The Swiss cheese stimulus of T. S. Meese and R. J. Summers (2007) and the closely related Battenberg stimulus of T. S. Meese (2010) were designed to avoid these problems by keeping target diameter constant and modulating interdigitated checks of first-order carrier contrast within the stimulus region. This approach has revealed a contrast integration process with greater potency than the classical model of spatial probability summation. Here, we used Swiss cheese stimuli to investigate the spatial limits of contrast integration over a range of carrier frequencies (1–16 c/deg) and raised plaid modulator frequencies (0.25–32 cycles/check). Subthreshold summation for interdigitated carrier pairs remained strong (~4 to 6 dB) up to 4 to 8 cycles/check. Our computational analysis of these results implied linear signal combination (following square-law transduction) over either (i) 12 carrier cycles or more or (ii) 1.27 deg or more. Our model has three stages of summation: short-range summation within linear receptive fields, medium-range integration to compute contrast energy for multiple patches of the image, and long-range pooling of the contrast integrators by probability summation. Our analysis legitimizes the inclusion of widespread integration of signal (and noise) within hierarchical image processing models. It also confirms the individual differences in the spatial extent of integration that emerge from our approach.
Resumo:
The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO, 30 mol % CaO) for each of the calcium precursors. When CaCl was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.
Resumo:
The processing conducted by the visual system requires the combination of signals that are detected at different locations in the visual field. The processes by which these signals are combined are explored here using psychophysical experiments and computer modelling. Most of the work presented in this thesis is concerned with the summation of contrast over space at detection threshold. Previous investigations of this sort have been confounded by the inhomogeneity in contrast sensitivity across the visual field. Experiments performed in this thesis find that the decline in log contrast sensitivity with eccentricity is bilinear, with an initial steep fall-off followed by a shallower decline. This decline is scale-invariant for spatial frequencies of 0.7 to 4 c/deg. A detailed map of the inhomogeneity is developed, and applied to area summation experiments both by incorporating it into models of the visual system and by using it to compensate stimuli in order to factor out the effects of the inhomogeneity. The results of these area summation experiments show that the summation of contrast over area is spatially extensive (occurring over 33 stimulus carrier cycles), and that summation behaviour is the same in the fovea, parafovea, and periphery. Summation occurs according to a fourth-root summation rule, consistent with a “noisy energy” model. This work is extended to investigate the visual deficit in amblyopia, finding that area summation is normal in amblyopic observers. Finally, the methods used to study the summation of threshold contrast over area are adapted to investigate the integration of coherent orientation signals in a texture. The results of this study are described by a two-stage model, with a mandatory local combination stage followed by flexible global pooling of these local outputs. In each study, the results suggest a more extensive combination of signals in vision than has been previously understood.
Resumo:
To extend our understanding of the early visual hierarchy, we investigated the long-range integration of first- and second-order signals in spatial vision. In our first experiment we performed a conventional area summation experiment where we varied the diameter of (a) luminance-modulated (LM) noise and (b) contrastmodulated (CM) noise. Results from the LM condition replicated previous findings with sine-wave gratings in the absence of noise, consistent with long-range integration of signal contrast over space. For CM, the summation function was much shallower than for LM suggesting, at first glance, that the signal integration process was spatially less extensive than for LM. However, an alternative possibility was that the high spatial frequency noise carrier for the CM signal was attenuated by peripheral retina (or cortex), thereby impeding our ability to observe area summation of CM in the conventional way. To test this, we developed the ''Swiss cheese'' stimulus of Meese and Summers (2007) in which signal area can be varied without changing the stimulus diameter, providing some protection against inhomogeneity of the retinal field. Using this technique and a two-component subthreshold summation paradigm we found that (a) CM is spatially integrated over at least five stimulus cycles (possibly more), (b) spatial integration follows square-law signal transduction for both LM and CM and (c) the summing device integrates over spatially-interdigitated LM and CM signals when they are co-oriented, but not when crossoriented. The spatial pooling mechanism that we have identified would be a good candidate component for amodule involved in representing visual textures, including their spatial extent.
Resumo:
We present an analytical model for describing complex dynamics of a hybrid system consisting of resonantly coupled classical resonator and quantum structures. Classical resonators in our model correspond to plasmonic metamaterials of various geometries, as well as other types of nano- and microstructure, the optical responses of which can be described classically. Quantum resonators are represented by atoms or molecules, or their aggregates (for example, quantum dots, carbon nanotubes, dye molecules, polymer or bio-molecules etc), which can be accurately modelled only with the use of the quantum mechanical approach. Our model is based on the set of equations that combines well established density matrix formalism appropriate for quantum systems, coupled with harmonic-oscillator equations ideal for modelling sub-wavelength plasmonic and optical resonators. As a particular example of application of our model, we show that the saturation nonlinearity of carbon nanotubes increases multifold in the resonantly enhanced near field of a metamaterial. In the framework of our model, we discuss the effect of inhomogeneity of the carbon-nanotube layer (bandgap value distribution) on the nonlinearity enhancement. © 2012 IOP Publishing Ltd.
Resumo:
Measurements of area summation for luminance-modulated stimuli are typically confounded by variations in sensitivity across the retina. Recently we conducted a detailed analysis of sensitivity across the visual field (Baldwin et al, 2012) and found it to be well-described by a bilinear “witch’s hat” function: sensitivity declines rapidly over the first 8 cycles or so, more gently thereafter. Here we multiplied luminance-modulated stimuli (4 c/deg gratings and “Swiss cheeses”) by the inverse of the witch’s hat function to compensate for the inhomogeneity. This revealed summation functions that were straight lines (on double log axes) with a slope of -1/4 extending to ≥33 cycles, demonstrating fourth-root summation of contrast over a wider area than has previously been reported for the central retina. Fourth-root summation is typically attributed to probability summation, but recent studies have rejected that interpretation in favour of a noisy energy model that performs local square-law transduction of the signal, adds noise at each location of the target and then sums over signal area. Modelling shows our results to be consistent with a wide field application of such a contrast integrator. We reject a probability summation model, a quadratic model and a matched template model of our results under the assumptions of signal detection theory. We also reject the high threshold theory of contrast detection under the assumption of probability summation over area.
Resumo:
Recent theoretical investigations have demonstrated that the stability of mode-locked solutions of multiple frequency channels depends on the degree of inhomogeneity in gain saturation. In this article, these results are generalized to determine conditions on each of the system parameters necessary for both the stability and the existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance between cubic gain and quintic loss, which is necessary for the existence of solutions as well. Furthermore, we determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple-frequency channels. © 2010 The American Physical Society.
Resumo:
Recent theoretical investigations have demonstrated that the stability of mode-locked solution of multiple frequency channels depends on the degree of inhomogeneity in gain saturation. In this paper, these results are generalized to determine conditions on each of the system parameters necessary for both the stability and existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance between cubic gain and quintic loss, which is necessary for existence of solutions as well. Furthermore, we determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple frequency channels. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
Due to the limitation of the lens effect of the optical fibre and the inhomogeneity of the laser fluence on different cores, it is still challenging to controllably inscribe different fibre Bragg gratings (FBGs) in multicore fibres. In this article, we reported the FBG inscription in four core fibres (FCFs), whose cores are arranged in the corners of a square lattice. By investigating the influence of different inscription conditions during inscription, different results, such as simultaneous inscription of all cores, selectively inscription of individual or two cores, and even double scanning in perpendicular core couples by diagonal, are achieved. The phase mask scanning method, consisting of a 244nm Argon-ion frequencydoubled laser, air-bearing linear transfer stage and cylindrical lens and mirror setup, is used to precisely control the grating inscription in FCFs. The influence of three factors is systematically investigated to overcome the limitations, and they are the defocusing length between the cylindrical lens and the bare fibre, the rotation geometry of the fibre to the irritation beam, and the relative position of the fibre in the vertical direction of the laser beam.
Resumo:
Minimization of undesirable temperature gradients in all dimensions of a planar solid oxide fuel cell (SOFC) is central to the thermal management and commercialization of this electrochemical reactor. This article explores the effective operating variables on the temperature gradient in a multilayer SOFC stack and presents a trade-off optimization. Three promising approaches are numerically tested via a model-based sensitivity analysis. The numerically efficient thermo-chemical model that had already been developed by the authors for the cell scale investigations (Tang et al. Chem. Eng. J. 2016, 290, 252-262) is integrated and extended in this work to allow further thermal studies at commercial scales. Initially, the most common approach for the minimization of stack's thermal inhomogeneity, i.e., usage of the excess air, is critically assessed. Subsequently, the adjustment of inlet gas temperatures is introduced as a complementary methodology to reduce the efficiency loss due to application of excess air. As another practical approach, regulation of the oxygen fraction in the cathode coolant stream is examined from both technical and economic viewpoints. Finally, a multiobjective optimization calculation is conducted to find an operating condition in which stack's efficiency and temperature gradient are maximum and minimum, respectively.