7 resultados para Inhibitory concentration
em Aston University Research Archive
Resumo:
Mucohalogen acids have been used for the preparation of a variety of 3,4-clihalogenated 2(5H)-furanones. In one synthetic step the carbarnates 2a-c and the pseudoanhydrides 4a-e were prepared using isocyanates and acid anhydrides. A series of 5-alkoxylated 3,4-dichloro-2(5H)-furanones 5a-o have been synthesized with a wide range of lipophilicity, using the hydroxy-form of mucohalogen acids 1a and 1b. The 5-allyl-3,4-dichloro-2(5H)-furanone 5f was derived into the dihydro-isoxazol 6 and the oxirane 7. The methyl ester 5a was converted with ammonia into the tetramic acid chloride 11. The pseudo acid chloride 3 was reacted further into the bis aziricline 8. Reduction of the mucochloric acid 1a furnished the trichlorofuranone 3. The cytotoxicity of these simple and bis-cyclic butenolides have been evaluated in tissue culture on MAC13 and MAC16 cancer cell lines using the MTT cytotoxicity assay. The ester 5g, the acetate 4b and the carbamate 2b displayed a cytotoxicity in the low micromolar range. Further, an IC50 (50% inhibitory concentration) of 50 nM and 30 nm was determined forthe epoxide 7 and the aziridine 18. © 2004 The Authors Recieved.
Resumo:
Objectives Effective skin antisepsis and disinfection of medical devices are key factors in preventing many healthcare-acquired infections associated with skin microorganisms, particularly Staphylococcus epidermidis. The aim of this study was to investigate the antimicrobial efficacy of chlorhexidine digluconate (CHG), a widely used antiseptic in clinical practice, alone and in combination with tea tree oil (TTO), eucalyptus oil (EO) and thymol against planktonic and biofilm cultures of S. epidermidis. Methods Antimicrobial susceptibility assays against S. epidermidis in a suspension and in a biofilm mode of growth were performed with broth microdilution and ATP bioluminescence methods, respectively. Synergy of antimicrobial agents was evaluated with the chequerboard method. Results CHG exhibited antimicrobial activity against S. epidermidis in both suspension and biofilm (MIC 2–8 mg/L). Of the essential oils thymol exhibited the greatest antimicrobial efficacy (0.5–4 g/L) against S. epidermidis in suspension and biofilm followed by TTO (2–16 g/L) and EO (4–64 g/L). MICs of CHG and EO were reduced against S. epidermidis biofilm when in combination (MIC of 8 reduced to 0.25–1 mg/L and MIC of 32–64 reduced to 4 g/L for CHG and EO, respectively). Furthermore, the combination of EO with CHG demonstrated synergistic activity against S. epidermidis biofilm with a fractional inhibitory concentration index of <0.5. Conclusions The results from this study suggest that there may be a role for essential oils, in particular EO, for improved skin antisepsis when combined with CHG.
Resumo:
Localised, targeted drug delivery to the oesophagus offers the potential for more effective delivery and reduced drug dosages, coupled with increased patient compliance. This thesis considers bioadhesive liquids, orally retained tablets and films as well as chewable dosage forms as drug delivery systems to target the oesophagus. Miconazole nitrate was used as a model antifungal agent. Chitosan and xanthan gum hydrogels were evaluated as viscous polymer viables with the in vitro retention, drug release and minimum inhibitory concentration values of the formulations measured. Xanthan showed prolonged retention on the oesophageal surface in vitro yet chitosan reduced the MIC value; both polymers offer potential for local targeting to the oesophagus. Cellulose derivatives were investigated within orally retained dosage forms. Both drug and polymer dissolution rates were measured to investigate the drug release mechanism and to develop a formulation with concomitant drug and polymer release to target the oesophagus with solubilised drug within a viscous media. Several in vitro dissolution methods were evaluated to measure drug release from chewable dosage forms with both drug and polymer dissolution quantified to investigate the effects of dissolution apparatus on drug release. The results from this thesis show that a range of drug delivery strategies that can be used to target drug to the oesophagus. The composition of these formulations as well as the methodology used within the development are crucial to best understand the formulation and predict its performance in vivo.
Resumo:
Transgenic BALB/c mice that express intrathyroidal human thyroid stimulating hormone receptor (TSHR) A-subunit, unlike wild-type (WT) littermates, develop thyroid lymphocytic infiltration and spreading to other thyroid autoantigens after T regulatory cell (Treg) depletion and immunization with human thyrotropin receptor (hTSHR) adenovirus. To determine if this process involves intramolecular epitope spreading, we studied antibody and T cell recognition of TSHR ectodomain peptides (A–Z). In transgenic and WT mice, regardless of Treg depletion, TSHR antibodies bound predominantly to N-terminal peptide A and much less to a few downstream peptides. After Treg depletion, splenocytes from WT mice responded to peptides C, D and J (all in the A-subunit), but transgenic splenocytes recognized only peptide D. Because CD4+ T cells are critical for thyroid lymphocytic infiltration, amino acid sequences of these peptides were examined for in silico binding to BALB/c major histocompatibility complex class II (IA–d). High affinity subsequences (inhibitory concentration of 50% < 50 nm) are present in peptides C and D (not J) of the hTSHR and mouse TSHR equivalents. These data probably explain why transgenic splenocytes do not recognize peptide J. Mouse TSHR mRNA levels are comparable in transgenic and WT thyroids, but only transgenics have human A-subunit mRNA. Transgenic mice can present mouse TSHR and human A-subunit-derived peptides. However, WT mice can present only mouse TSHR, and two to four amino acid species differences may preclude recognition by CD4+ T cells activated by hTSHR-adenovirus. Overall, thyroid lymphocytic infiltration in the transgenic mice is unrelated to epitopic spreading but involves human A-subunit peptides for recognition by T cells activated using the hTSHR.
Resumo:
3-Substituted pyrrole-2,5-diones were synthesised from mucohalogen acids and the antibacterial activity was subsequently determined in biological assays. The minimum inhibitory concentration and the minimum bactericidal concentration of 2a were determined for a wide range of microorganisms in the low micromolar range. Protein identification using SDS-PAGE and LC/MS/MS demonstrated a partly degradation of OprF-related proteins giving an insight into the underlying mechanism of these novel antibacterial agents. © 2007 Bentham Science Publishers Ltd.
Resumo:
Objective: To analyze the recent epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in a UK tertiary referral center. Methods: We collected epidemiological and laboratory data on all cases of MRSA bacteremia from September 1, 2005 to December 31, 2007. Results: There were 195 clinically significant episodes. Most were hospital-acquired. Only one episode occurred in patients without a history of hospital admission in the previous 12 months. An intravascular device was the most common focus of infection (37%), with no identifiable source found in 35% of episodes. Twenty-eight percent of patients died within 30 days of bacteremia. Mortality was significantly higher in the absence of an identifiable focus. Failure to include an antibiotic active against MRSA in the empirical treatment was only significantly associated with death in patients showing signs of hemodynamic instability (p < 0.001). No isolates had a minimum inhibitory concentration to vancomycin above 1.5. mg/l and no heteroresistance to glycopeptide antibiotics (heteroresistant vancomycin-intermediate Staphylococcus aureus; hVISA) was detected. All isolates were sensitive to daptomycin, tigecycline, and linezolid. Conclusions: Despite improvement in infection control measures, medical devices remain the most common source of infection. Inappropriate empirical antibiotic usage is associated with a poor outcome in patients with signs of severe sepsis. Susceptibility to glycopeptides and newer antibiotics remains good. © 2010 International Society for Infectious Diseases.
Resumo:
Four novel oxapenem compounds were evaluated for their ß-lactamase inhibitory and antibacterial properties. Two (AM-112 and AM-113) displayed intrinsic antibacterial activity with MICs of between 2 to 16µg/ml and 0.5-2µg/ml against Escherichia coli and methicillin-sensitive and -resistant Staphylococcus aureus, respectively. The isomers of these compounds, AM-115 and AM-114 did not display significant antibacterial activity. Combination of the oxapenems with ceftazidime afforded protection against ß-lactamase-producing strains, including hyperproducers of class C enzymes and extended-spectrum ß-lactamase enzymes. A fixed 4µg/ml concentration of AM-112 protected a panel of eight cephalosporins against hydrolysis by class A and class C ß-lactamase producers. In vivo studies confirmed the protective effect of AM-112 for ceftazidime against ß-lactamase producing S. aureus, Enterobacter cloacae and E. coli strains in a murine intraperitoneal infection model. Each of the oxapenems inhibited class A, class C and class D ß-lactamases isolated from whole cells and purified by isoelectric focusing. AM-114 and AM-115 were as effective as clavulanic acid against class A enzymes. AM-112 and AM-113 were less potent against these enzymes. Class C and class D enzymes proved very susceptible to inhibition by the oxapenems. Molecular modelling of the oxapenems in the active site of the class A. TEM-1 and class C P99 enzymes identified a number of potential sites of interaction. The modelling suggested that Ser-130 in TEM-1 and Tyr-150 in P99 were likely candidates for cross-linking of the inhibitor, leading to inhibition of the enzyme. Morphology studies indicated that sub-inhibitory concentrations of the oxapenems caused the formation of round-shaped cells in E. coli DC0, indicating inhibition of penicillin-binding protein 2 (PBP2). The PBP affinity profile of AM-112 was examined in isolated cell membranes of E. coli DC0, S. aureus NCTC 6571, Enterococcus faecalis SFZ and E. faecalis ATCC 29213, in competition with a radiolabelled penicillin. PBP2 was identified as the primary target for AM-112 in E. coli DC0. Studies on S. aureus NCTC 6571 failed to identify a binding target. AM-112 bound to all the PBPs of both E. faecalis strains, and a concentration of 10µg/ml inhibited all the PBPs except PBP3.