26 resultados para Infrastructure and Construction Projects

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The purpose of the paper is to the identify risk factors, which affect oil and gas construction projects in Vietnam and derive risk responses. Design/methodology/approach - Questionnaire survey was conducted with the involvement of project executives of PetroVietnam and statistical analysis was carried out in order to identify the major project risks. Subsequently, mitigating measures were derived using informal interviews with the various levels of management of PetroVietnam. Findings - Bureaucratic government system and long project approval procedures, poor design, incompetence of project team, inadequate tendering practices, and late internal approval processes from the owner were identified as major risks. The executives suggested various strategies to mitigate the identified risks. Reforming the government system, effective partnership with foreign collaborators, training project executives, implementing contractor evaluation using multiple criteria decision-making technique, and enhancing authorities of project people were suggested as viable approaches. Practical implications - The improvement measures as derived in this study would improve chances of project success in the oil and gas industry in Vietnam. Originality/value - There are several risk management studies on managing projects in developing countries. However, as risk factors vary considerably across industry and countries, the study of risk management for successful projects in the oil and gas industry in Vietnam is unique and has tremendous importance for effective project management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many planning and control tools, especially network analysis, have been developed in the last four decades. The majority of them were created in military organization to solve the problem of planning and controlling research and development projects. The original version of the network model (i.e. C.P.M/PERT) was transplanted to the construction industry without the consideration of the special nature and environment of construction projects. It suited the purpose of setting up targets and defining objectives, but it failed in satisfying the requirement of detailed planning and control at the site level. Several analytical and heuristic rules based methods were designed and combined with the structure of C.P.M. to eliminate its deficiencies. None of them provides a complete solution to the problem of resource, time and cost control. VERT was designed to deal with new ventures. It is suitable for project evaluation at the development stage. CYCLONE, on the other hand, is concerned with the design and micro-analysis of the production process. This work introduces an extensive critical review of the available planning techniques and addresses the problem of planning for site operation and control. Based on the outline of the nature of site control, this research developed a simulation based network model which combines part of the logics of both VERT and CYCLONE. Several new nodes were designed to model the availability and flow of resources, the overhead and operating cost and special nodes for evaluating time and cost. A large software package is written to handle the input, the simulation process and the output of the model. This package is designed to be used on any microcomputer using MS-DOS operating system. Data from real life projects were used to demonstrate the capability of the technique. Finally, a set of conclusions are drawn regarding the features and limitations of the proposed model, and recommendations for future work are outlined at the end of this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous techniques have been developed to control cost and time of construction projects. However, there is limited research on issues surrounding the practical usage of these techniques. To address this, a survey was conducted on the top 150 construction companies and 100 construction consultancies in the UK aimed at identifying common project control practices and factors inhibiting effective project control in practice. It found that despite the vast application of control techniques a high proportion of respondents still experienced cost and time overruns on a significant proportion of their projects. Analysis of the survey results concluded that more effort should be geared at the management of the identified top project control inhibiting factors. This paper has outlined some measures for mitigating these inhibiting factors so that the outcome of project time and cost control can be improved in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – The UK experienced a number of Extreme Weather Events (EWEs) during recent years and a significant number of businesses were affected as a result. With the intensity and frequency of weather extremes predicted in the future, enhancing the resilience of businesses, especially of Small and Medium-sized Enterprises (SMEs), who are considered as highly vulnerable, has become a necessity. However, little research has been undertaken on how construction SMEs respond to the risk of EWEs. In seeking to help address this dearth of research, this investigation sought to identify how construction SMEs were being affected by EWEs and the coping strategies being used. Design/methodology/approach – A mixed methods research design was adopted to elicit information from construction SMEs, involving a questionnaire survey and case study approach. Findings – Results indicate a lack of coping strategies among the construction SMEs studied. Where the coping strategies have been implemented, these were found to be extensions of their existing risk management strategies rather than radical measures specifically addressing EWEs. Research limitations/implications – The exploratory survey focused on the Greater London area and was limited to a relatively small sample size. This limitation is overcome by conducting detailed case studies utilising two SMEs whose projects were located in EWE prone localities. The mixed method research design adopted benefits the research by presenting more robust findings. Practical implications – A better way of integrating the potential of EWEs into the initial project planning stage is required by the SMEs. This could possibly be achieved through a better risk assessment model supported by better EWE prediction data. Originality/value – The paper provides an original contribution towards the overarching agenda of resilience of SMEs and policy making in the area of EWE risk management. It informs both policy makers and practitioners on issues of planning and preparedness against EWEs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SINNMR (Sonically Induced Narrowing of the Nuclear Magnetic Resonance spectra of solids), is a novel technique that is being developed to enable the routine study of solids by nuclear magnetic resonance spectroscopy. SINNMR aims to narrow the broad resonances that are characteristic of solid state NMR by inducing rapid incoherent motion of solid particles suspended in a support medium, using high frequency ultrasound in the range 2-10 MHz. The width of the normal broad resonances from solids are due to incomplete averaging of several components of the total spin Hamiltonian caused by restrictions placed on molecular motion within a solid. At present Magic Angle Spinning (MAS) NMR is the classical solid state technique used to reduce line broadening, but: this has associated problems, not least of which is the appearance of many spinning side bands which confuse the spectra. It is hoped that SlNNMR will offer a simple alternative, particularly as it does not reveal spinning sidebands The fundamental question concerning whether the use of ultrasound within a cryo-magnet will cause quenching has been investigated with success, as even under the most extreme conditions of power, frequency and irradiator time, the magnet does not quench. The objective of this work is to design and construct a SINNMR probe for use in a super conducting cryo-magnet NMR spectrometer. A cell for such a probe has been constructed and incorporated into an adapted high resolution broadband probe. It has been proved that the cell is capable of causing cavitation, up to 10 MHz, by running a series of ultrasonic reactions within it and observing the reaction products. It was found that the ultrasound was causing the sample to be heated to unacceptable temperatures and this necessitated the incorporation of temperature stabilisation devices. Work has been performed on the investigation of the narrowing of the solid state 23Na spectrum of tri-sodium phosphate using high frequency ultrasound. Work has also been completed on the signal enhancement and T1 reduction of a liquid mixture and a pure compound using ultrasound. Some preliminary "bench" experiments have been completed on a novel ultrasonic device designed to help minimise sample heating. The concept involves passing the ultrasound through a temperature stabilised, liquid filled funnel that has a drum skin on the end that will enable the passage of ultrasound into the sample. Bench experiments have proved that acoustic attenuation is low and that cavitation in the liquid beyond the device is still possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is concerned with quality and productivity aspects of traditional house building. The research focuses on these issues by concentrating on the services and finishing stages of the building process. These are work stages which have not been fully investigated in previous productivity related studies. The primary objective of the research is to promote an integrated design and construction led approach to traditional house building based on an original concept of 'development cycles'. This process involves the following: site monitoring; the analysis of work operations; implementing design and construction changes founded on unique information collected during site monitoring; and subsequent re-monitoring to measure and assess Ihe effect of change. A volume house building firm has been involved in this applied research and has allowed access to its sites for production monitoring purposes. The firm also assisted in design detailing for a small group of 'experimental' production houses where various design and construction changes were implemented. Results from the collaborative research have shown certain quality and productivity improvements to be possible using this approach, albeit on a limited scale at this early experimental stage. The improvements have been possible because an improved activity sampling technique, developed for, and employed by the study, has been able to describe why many quality and productivity related problems occur during site building work. Experience derived from the research has shown the following attributes to be important: positive attitudes towards innovation; effective communication; careful planning and organisation; and good coordination and control at site level. These are all essential aspects of quality led management and determine to a large extent the overall success of this approach. Future work recommendations must include a more widespread use of innovative practices so that further design and construction modifications can be made. By doing this, productivity can be improved, cost savings made and better quality afforded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change has become one of the prime challenges the society has to face in the future. As far as businesses are concerned, it also has added one other important issue that they have to consider as part of their business planning. Climate change is of significant importance particularly to the Small and Medium-sized enterprises (SMEs), which are considered as the most vulnerable among the business community to the effects of climate change. This paper presents the findings of a literature review conducted with the aim of identifying the specific importance of climate change to the construction sector SMEs. The objectives of the paper are to identify the vulnerability of construction sector SMEs to the effects of climate change, their consequences and also to identify the importance of improving resilience and implementing adaptive measures to manage these issues. The paper also outlines the directions of a study undertaken to address these issues as part of an EPSRC funded research project titled “Community Resilience to Extreme Weather Events – CREW”. The paper concludes by stressing the importance of improving the resilience of construction sector SMEs to climate change effects and also the importance of collective action in this regard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction projects are risky. However, the characteristics of the risk highly depend on the type of procurement being adopted for managing the project. A build-operate-transfer (BOT) project is recognized as one of the most risky project schemes. There are instances of project failure where a BOT scheme was employed. Ineffective rts are increasingly being managed using various risk management tools and techniques. However, application of those tools depends on the nature of the project, organization's policy, project management strategy, risk attitude of the project team members, and availability of the resources. Understanding of the contents and contexts of BOT projects, together with a thorough understanding of risk management tools and techniques, helps select processes of risk management for effective project implementation in a BOT scheme. This paper studies application of risk management tools and techniques in BOT projects through reviews of relevant literatures and develops a model for selecting risk management process for BOT projects. The application to BOT projects is considered from the viewpoints of the major project participants. Discussion is also made with regard to political risks. This study would contribute to the establishment of a framework for systematic risk management in BOT projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the availability of various control techniques and project control software many construction projects still do not achieve their cost and time objectives. Research in this area so far has mainly been devoted to identifying causes of cost and time overruns. There is limited research geared towards studying factors inhibiting the ability of practitioners to effectively control their projects. To fill this gap, a survey was conducted on 250 construction project organizations in the UK, which was followed by face-to-face interviews with experienced practitioners from 15 of these organizations. The common factors that inhibit both time and cost control during construction projects were first identified. Subsequently 90 mitigating measures have been developed for the top five leading inhibiting factors—design changes, risks/uncertainties, inaccurate evaluation of project time/duration, complexities and non-performance of subcontractors were recommended. These mitigating measures were classified as: preventive, predictive, corrective and organizational measures. They can be used as a checklist of good practice and help project managers to improve the effectiveness of control of their projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to address the main deficiencies with the prevailing project cost and time control practices for construction projects in the UK. A questionnaire survey was carried out with 250 top companies followed by in-depth interviews with 15 experienced practitioners from these companies in order to gain further insights of the identified problems, and their experience of good practice on how these problems can be tackled. On the basis of these interviews and syntheses with literature, a list of 65 good practice recommendations have been developed for the key project control tasks: planning, monitoring, reporting and analysing. The Delphi method was then used, with the participation of a panel of 8 practitioner experts, to evaluate these improvement recommendations and to establish their degree of relevance. After two rounds of Delphi, these recommendations are put forward as "critical", "important", or "helpful" measures for improving project control practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an exploding and fluctuating construction market, managers are facing a challenge, which is how to manage business on a wider scale and to utilize modern developments in information technology to promote productivity. The extraordinary development of telecommunications and computer technology makes it possible for people to plan, lead, control, organize and manage projects from a distance without the need to be on site on a daily basis. A modern management known as distance management (DM) or remote management is emerging. Physical distance no longer determines the boundary of management since managers can now operate projects through virtual teams that organize manpower, material and production without face-to-face communication. What organization prototype could overcome psychological and physical barriers to reengineer a successful project through information technology? What criteria distinguishes the adapted way of communication of individual activities in a teamwork and assist the integration of an efficient and effective communication between face-to-face and a physical distance? The entire methodology has been explained through a case application on refuse incineration plant projects in Taiwan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time, cost and quality achievements on large-scale construction projects are uncertain because of technological constraints, involvement of many stakeholders, long durations, large capital requirements and improper scope definitions. Projects that are exposed to such an uncertain environment can effectively be managed with the application of risk management throughout the project life cycle. Risk is by nature subjective. However, managing risk subjectively poses the danger of non-achievement of project goals. Moreover, risk analysis of the overall project also poses the danger of developing inappropriate responses. This article demonstrates a quantitative approach to construction risk management through an analytic hierarchy process (AHP) and decision tree analysis. The entire project is classified to form a few work packages. With the involvement of project stakeholders, risky work packages are identified. As all the risk factors are identified, their effects are quantified by determining probability (using AHP) and severity (guess estimate). Various alternative responses are generated, listing the cost implications of mitigating the quantified risks. The expected monetary values are derived for each alternative in a decision tree framework and subsequent probability analysis helps to make the right decision in managing risks. In this article, the entire methodology is explained by using a case application of a cross-country petroleum pipeline project in India. The case study demonstrates the project management effectiveness of using AHP and DTA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction projects are risky. A build-operate-transfer (BOT) project is recognised as one of the most risky project schemes. This scheme has been employed rather frequently in the past few decades, in both developed and developing countries. However, because of its risky nature, there have been failures as well as successes. Risk analysis in an appropriate way is desirable in implementing BOT projects. There are various tools and techniques applicable to risk analysis. The application of these risk analysis tools and techniques (RATTs) to BOT projects depends on an understanding of the contents and contexts of BOT projects, together with a thorough understanding of RATTs. This paper studies key points in their applications through reviews of relevant literatures and discusses the application of RATTs to BOT projects. The application to BOT projects is considered from the viewpoints of the major project participants, i.e. government, lenders and project companies. Discussion is also made with regard to political risks, which are very important in BOT projects. A flow chart has been introduced to select an appropriate tool for risk management in BOT projects. This study contributes to the establishment of a framework for systematic risk management in BOT projects.