26 resultados para Infrastrcuture Project Planning
em Aston University Research Archive
Resumo:
Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.
Resumo:
For many decades, the Kingdom of Saudi Arabia has been widely known for being a reliable oil exporter. This fact, however, has not exempted it from facing significant domestic energy challenges. One of the most pressing of these challenges involves bridging the widening electricity supply-demand gap where, currently, the demand is growing at a very fast rate. One crucial means to address this challenge is through delivering power supply projects with maximum efficiency. Project delivery delay, however, is not uncommon in this highly capital-intensive industry, indicating electricity supplies are not coping with the demand increases. To provide a deeper insight into the challenges of project implementation and efficient practice, this research adopts a pragmatic approach by triangulating literature, questionnaires and semi-structured interviews. The research was conducted in the Saudi Arabian power supply industry – Western Operating Area. A total of 105 usable questionnaires were collected, and 28 recorded, semi-structured interviews were conducted, analysed and synthesised to produce a conceptual model of what constitutes the project implementation challenges in the investigated industry. This was achieved by conducting a comprehensive ranking analysis applied to all 58 identified and surveyed factors which, according to project practitioners in the investigated industry, contribute to project delay. 28 of these project delay factors were selected as the "most important" ones. Factor Analysis was employed to structure these 28 most important project delay factors into the following meaningful set of 7 project implementation challenges: Saudi Electricity Company's contractual commitments, Saudi Electricity Company's communication and coordination effectiveness, contractors' project planning and project control effectiveness, consultant-related aspects, manpower challenges and material uncertainties, Saudi Electricity Company's tendering system, and lack of project requirements clarity. The study has implications for industry policy in that it provides a coherent assessment of the key project stakeholders' central problems. From this analysis, pragmatic recommendations are proposed that, if enacted, will minimise the significance of the identified problems on future project outcomes, thus helping to ensure the electricity supply-demand gap is diminished.
Resumo:
The aim of this research was to improve the quantitative support to project planning and control principally through the use of more accurate forecasting for which new techniques were developed. This study arose from the observation that in most cases construction project forecasts were based on a methodology (c.1980) which relied on the DHSS cumulative cubic cost model and network based risk analysis (PERT). The former of these, in particular, imposes severe limitations which this study overcomes. Three areas of study were identified, namely growth curve forecasting, risk analysis and the interface of these quantitative techniques with project management. These fields have been used as a basis for the research programme. In order to give a sound basis for the research, industrial support was sought. This resulted in both the acquisition of cost profiles for a large number of projects and the opportunity to validate practical implementation. The outcome of this research project was deemed successful both in theory and practice. The new forecasting theory was shown to give major reductions in projection errors. The integration of the new predictive and risk analysis technologies with management principles, allowed the development of a viable software management aid which fills an acknowledged gap in current technology.
Resumo:
Rural electrification projects and programmes in many countries have suffered from design, planning, implementation and operational flaws as a result of ineffective project planning and lack of systematic project risk analysis. This paper presents a hierarchical risk-management framework for effectively managing large-scale development projects. The proposed framework first identifies, with the involvement of stakeholders, the risk factors for a rural electrification programme at three different levels (national, state and site). Subsequently it develops a qualitative risk prioritising scheme through probability and severity mapping and provides mitigating measures for most vulnerable risks. The study concludes that the hierarchical risk-management approach provides an effective framework for managing large-scale rural electrification programmes. © IAIA 2007.
Resumo:
Purpose - The purpose of the paper is to develop an integrated quality management model, which identifies problems, suggests solutions, develops a framework for implementation and helps evaluate performance of health care services dynamically. Design/methodology/approach - This paper uses logical framework analysis (LFA), a matrix approach to project planning for managing quality. This has been applied to three acute healthcare services (Operating room utilization, Accident and emergency, and Intensive care) in order to demonstrate its effectiveness. Findings - The paper finds that LFA is an effective method of quality management of hospital-based healthcare services. Research limitations/implications - This paper shows LFA application in three service processes in one hospital. However, ideally this is required to be tested in several hospitals and other services as well. Practical implications - In the paper the proposed model can be practised in hospital-based healthcare services for improving performance. Originality/value - The paper shows that quality improvement in healthcare services is a complex and multi-dimensional task. Although various quality management tools are routinely deployed for identifying quality issues in health care delivery and corrective measures are taken for superior performance, there is an absence of an integrated approach, which can identify and analyze issues, provide solutions to resolve those issues, develop a project management framework (planning, monitoring, and evaluating) to implement those solutions in order to improve process performance. This study introduces an integrated and uniform quality management tool. It integrates operations with organizational strategies. © Emerald Group Publishing Limited.
Resumo:
This paper presents a goal programming model to optimise the deployment of pyrolysis plants in Punjab, India. Punjab has an abundance of waste straw and pyrolysis can convert this waste into alternative bio-fuels, which will facilitate the provision of valuable energy services and reduce open field burning. A goal programming model is outlined and demonstrated in two case study applications: small scale operations in villages and large scale deployment across Punjab's districts. To design the supply chain, optimal decisions for location, size and number of plants, downstream energy applications and feedstocks processed are simultaneously made based on stakeholder requirements for capital cost, payback period and production cost of bio-oil and electricity. The model comprises quantitative data obtained from primary research and qualitative data gathered from farmers and potential investors. The Punjab district of Fatehgarh Sahib is found to be the ideal location to initially utilise pyrolysis technology. We conclude that goal programming is an improved method over more conventional methods used in the literature for project planning in the field of bio-energy. The model and findings developed from this study will be particularly valuable to investors, plant developers and municipalities interested in waste to energy in India and elsewhere. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
Completing projects faster than the normal duration is always a challenge to the management of any project, as it often demands many paradigm shifts. Opportunities of globalization, competition from private sectors and multinationals force the management of public sector organizations in the Indian petroleum sector to take various aggressive strategies to maintain their profitability. Constructing infrastructure for handling petroleum products is one of them. Moreover, these projects are required to be completed in faster duration compared to normal schedules to remain competitive, to get faster return on investment, and to give longer project life. However, using conventional tools and techniques of project management, it is impossible to handle the problem of reducing the project duration from a normal period. This study proposes the use of concurrent engineering in managing projects for radically reducing project duration. The phases of the project are accomplished concurrently/simultaneously instead of in a series. The complexities that arise in managing projects are tackled through restructuring project organization, improving management commitment, strengthening project-planning activities, ensuring project quality, managing project risk objectively and integrating project activities through management information systems. These would not only ensure completion of projects in fast track, but also improve project effectiveness in terms of quality, cost effectiveness, team building, etc. and in turn overall productivity of the project organization would improve.
Resumo:
Purpose – The UK experienced a number of Extreme Weather Events (EWEs) during recent years and a significant number of businesses were affected as a result. With the intensity and frequency of weather extremes predicted in the future, enhancing the resilience of businesses, especially of Small and Medium-sized Enterprises (SMEs), who are considered as highly vulnerable, has become a necessity. However, little research has been undertaken on how construction SMEs respond to the risk of EWEs. In seeking to help address this dearth of research, this investigation sought to identify how construction SMEs were being affected by EWEs and the coping strategies being used. Design/methodology/approach – A mixed methods research design was adopted to elicit information from construction SMEs, involving a questionnaire survey and case study approach. Findings – Results indicate a lack of coping strategies among the construction SMEs studied. Where the coping strategies have been implemented, these were found to be extensions of their existing risk management strategies rather than radical measures specifically addressing EWEs. Research limitations/implications – The exploratory survey focused on the Greater London area and was limited to a relatively small sample size. This limitation is overcome by conducting detailed case studies utilising two SMEs whose projects were located in EWE prone localities. The mixed method research design adopted benefits the research by presenting more robust findings. Practical implications – A better way of integrating the potential of EWEs into the initial project planning stage is required by the SMEs. This could possibly be achieved through a better risk assessment model supported by better EWE prediction data. Originality/value – The paper provides an original contribution towards the overarching agenda of resilience of SMEs and policy making in the area of EWE risk management. It informs both policy makers and practitioners on issues of planning and preparedness against EWEs.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Projects that are exposed to uncertain environments can be effectively controlled with the application of risk analysis during the planning stage. The Analytic Hierarchy Process, a multiattribute decision-making technique, can be used to analyse and assess project risks which are objective or subjective in nature. Among other advantages, the process logically integrates the various elements in the planning process. The results from risk analysis and activity analysis are then used to develop a logical contingency allowance for the project through the application of probability theory. The contingency allowance is created in two parts: (a) a technical contingency, and (b) a management contingency. This provides a basis for decision making in a changing project environment. Effective control of the project is made possible by the limitation of the changes within the monetary contingency allowance for the work package concerned, and the utilization of the contingency through proper appropriation. The whole methodology is applied to a pipeline-laying project in India, and its effectiveness in project control is demonstrated.
Resumo:
An inherent weakness in the management of large scale projects is the failure to achieve the scheduled completion date. When projects are planned with the objective of time achievement, the initial planning plays a vital role in the successful achievement of project deadlines. Cost and quality are additional priorities when such projects are being executed. This article proposes a methodology for achieving time duration of a project through risk analysis with the application of a Monte Carlo simulation technique. The methodology is demonstrated using a case application of a cross-country petroleum pipeline construction project.
Resumo:
The development of an information system in Caribbean public sector organisations is usually seen as a matter of installing hardware and software according to a directive from senior management, without much planning. This causes huge investment in procuring hardware and software without improving overall system performance. Increasingly, Caribbean organisations are looking for assurances on information system performance before making investment decisions not only to satisfy the funding agencies, but also to be competitive in this dynamic and global business world. This study demonstrates an information system planning approach using a process-reengineering framework. Firstly, the stakeholders for the business functions are identified along with their relationships and requirements. Secondly, process reengineering is carried out to develop the system requirements. Accordingly, information technology is selected through detailed system requirement analysis. Thirdly, cost-benefit analysis, identification of critical success factors and risk analysis are carried out to strengthen the selection. The entire methodology has been demonstrated through an information system project in the Barbados drug service, a public sector organisation in the Caribbean.
Resumo:
Purpose – The purpose of this paper is to help managers to successfully plan, implement, and operate enterprise resource planning (ERP) projects using a risk management framework. Design/methodology/approach – This paper adopted a combined literature review and case study method. Using literature review, the paper first identified major issues of managing ERP projects and develops a risk management framework for managing those issues. The proposed risk management framework was then applied to a ERP implementation project of a UK-based energy services group and its effectiveness for managing ERP projects implementation had been demonstrated. Additionally, the risk factors as identified from the case application are compared with the risk factors from the previous researches so as to suggest mitigating measures. Findings – All the risk factors are categorized into planning, implementation and operations phases along with project processes, organizational transformation and information technology (IT) perspectives. Project implementation phase is the most vulnerable to failure. The case study results reveal that the effect of other projects on on-going ERP project, management of overall IT architecture and non-availability of resources for organizational transformation are most critical from likelihood and impact perspectives. Managing risk across various phases of project and equal emphasize to effective project management, organizational transformation and IT adoption are the key to success in ERP implementation. Practical implications – The risk factors, which were identified using literature review and the case study, have great significance as mitigating measures of those risks may result successful implementation of ERP projects in the industry. Additionally, proposed risk management framework could be customized to implement ERP projects elsewhere. Originality/value – ERP projects are risky as they are capital intensive, technically complex, and call for organizational transformation. There are both success and failure stories. However, both researchers and practitioners agree, that if it can be implemented and operated successfully and benefits should be achievable. Although there are many studies on ERP implementation, little has been discussed on managing risks of ERP projects. Therefore, this paper bridges the gap.
Resumo:
This study highlights the variables associated with the implementation of renewable energy (RE) projects for sustainable development in India, by using an interpretive structural modeling (ISM) - based approach to model variables' interactions, which impact RE adoption. These variables have been categorized under enablers that help to enhance implementation of RE projects for sustainable development. A major finding is that public awareness regarding RE for sustainable development is a very significant enabler. For successful implementation of RE projects, it has been observed that top management should focus on improving highdriving power enablers (leadership, strategic planning, public awareness, management commitment, availability of finance, government support, and support from interest groups).
Resumo:
The work described in the following pages was carried out at various sites in the Rod Division of the Delta Metal Company. Extensive variation in the level of activity in the industry during the years 1974 to I975 had led to certain inadequacies being observed 1n the traditional cost control procedure. In an attempt to remedy this situation it was suggested that a method be found of constructing a system to improve the flexibility of cost control procedures. The work involved an assimilation of the industrial and financial environment via pilot studies which would later prove invaluable to home in on the really interesting and important areas. Weaknesses in the current systems which came to light made the methodology of data collection and the improvement of cost control and profit planning procedures easier to adopt. Because of the requirements of the project to investigate the implications of Cost behaviour for profit planning and control, the next stage of the research work was to utilise the on-site experience to examine at a detailed level the nature of cost behaviour. The analysis of factory costs then showed that certain costs, which were the most significant exhibited a stable relationship with respect to some known variable, usually a specific measure of Output. These costs were then formulated in a cost model, to establish accurate standards in a complex industrial setting in order to provide a meaningful comparison against which to judge actual performance. The necessity of a cost model was •reinforced by the fact that the cost behaviour found to exist was, in the main, a step function, and this complex cost behaviour, the traditional cost and profit planning procedures could not possibly incorporate. Already implemented from this work is the establishment of the post of information officer to co-ordinate data collection and information provision.