11 resultados para Infrared spectroscopy (IR)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe{HB(CHN)} is observed by variable temperature infrared and magnetic studies to have a spin transition between the low spin S = 0 and high spin S = 2 states at 331 K (58 °C) with thermal hysteresis of ~1.5 K. Changes in the triazole ligand IR absorptions demonstrate that distant non-metal-ligand vibrations are altered upon the change in electronic structure associated with the spin-crossover can be used to monitor the the spin-crossover transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent spectral test data from methanol extracted samples of perennial forage grass with accuracies of 92.8%, 86.5%, 86.1%, 59.7% and 84.7% respectively, and analysis of model projection scores showed that the models relied generally on spectral features that are known absorptions of these compounds. Acid detergent lignin was predicted in samples of two species of energy grass, (Phalaris arundinacea and Pancium virgatum) with an accuracy of 84.5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two energy grass species, switch grass, a North American tuft grass, and reed canary grass, a European native, are likely to be important sources of biomass in Western Europe for the production of biorenewable energy. Matching chemical composition to conversion efficiency is a primary goal for improvement programmes and for determining the quality of biomass feed-stocks prior to use and there is a need for methods which allow cost effective characterisation of chemical composition at high rates of sample through-put. In this paper we demonstrate that nitrogen content and alkali index, parameters greatly influencing thermal conversion efficiency, can be accurately predicted in dried samples of these species grown under a range of agronomic conditions by partial least square regression of Fourier transform infrared spectra (R2 values for plots of predicted vs. measured values of 0.938 and 0.937, respectively). We also discuss the prediction of carbon and ash content in these samples and the application of infrared based predictive methods for the breeding improvement of energy grasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitration of tyrosine in proteins and peptides is a post-translational modification that occurs under conditions of oxidative stress. It is implicated in a variety of medical conditions, including neurodegenerative and cardiovascular diseases. However, monitoring tyrosine nitration and understanding its role in modifying biological function remains a major challenge. In this work, we investigate the use of electron-vibration-vibration (EVV) two-dimensional infrared (2DIR) spectroscopy for the study of tyrosine nitration in model peptides. We demonstrate the ability of EVV 2DIR spectroscopy to differentiate between the neutral and deprotonated states of 3-nitrotyrosine, and we characterize their spectral signatures using information obtained from quantum chemistry calculations and simulated EVV 2DIR spectra. To test the sensitivity of the technique, we use mixed-peptide samples containing various levels of tyrosine nitration, and we use mass spectrometry to independently verify the level of nitration. We conclude that EVV 2DIR spectroscopy is able to provide detailed spectroscopic information on peptide side-chain modifications and to detect nitration levels down to 1%. We further propose that lower nitration levels could be detected by introducing a resonant Raman probe step to increase the detection sensitivity of EVV 2DIR spectroscopy. (Graph Presented).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of a novel heterocyclic–telechelic polymer, α,ω-oxetanyl-telechelic poly(3-nitratomethyl-3-methyl oxetane), is described. Infrared spectroscopy (IR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy have been used to confirm the successful synthesis, demonstrating the presence of the telechelic-oxetanyl moieties. Synthesis of the terminal functionalities has been achieved via displacement of nitrato groups, in a manner similar to that employed with other leaving groups such as azido, bromo, and nitro, initiated by nucleophiles. In the present case, displacement occurs on the ends of a nitrato-functionalized polymer driven by the formation of sodium nitrate, which is supported by the polar aprotic solvent N,N-dimethyl formamide. The formation of an alkoxide at the polymer chain ends is favored and allows internal back-biting to the nearest carbon bearing the nitrato group, intrinsically in an SN2(i) reaction, leading to α,ω-oxetanyl functionalization. The telechelic-oxetanyl moieties have the potential to be cross-linked by chemical (e.g., acidic) or radiative (e.g., ultraviolet) curing methods without the use of high temperatures, usually below 100°C. This type of material was designed for future use as a contraband simulant, whereby it would form the predominant constituent of elastomeric composites comprising rubbery polymer with small quantities of solids, typically crystals of contraband substances, such as explosives or narcotics. This method also provides an alternative approach to ring closure and synthesis of heterocycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study investigates the effect of different sample preparation methods on the pyrolysis behaviour of metal-added biomass; Willow samples were compared in the presence of two salts of zinc and lead containing sulphate and nitrate anions which were added to the wood samples with three different techniques as dry-mixing, impregnation and ion-exchange. The effect of acid and water wash as common demineralisation pre-treatments were also analysed to evaluate their roles in the thermal degradation of the biomass. Results from thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and pyrolysis-mass spectrometry (Py-MS) measurements indicated that these pre-treatments change the matrix and the physical-chemical properties of wood. Results suggested that these structural changes increase the thermal stability of cellulose during pyrolysis. Sample preparation was also found to be a crucial factor during pyrolysis; different anions of metal salts changed the weight loss rate curves of wood material, which indicates changes in the primary degradation process of the biomass. Results also showed that dry-mixing, impregnation or ion-exchange influence the thermal behaviour of wood in different ways when a chosen metal salt was and added to the wood material. © 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, I describe studies on fabrication, spectral characteristics and applications of tilted fibre gratings (TFGs) with small, large and 45° tilted structures and novel developments in fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in normal silica and mid-infrared (mid-IR) glass fibres using near-IR femtosecond laser. One of the major contributions presented in this thesis is the systematic investigation of structures, inscription methods and spectral, polarisation dependent loss (PDL) and thermal characteristics of TFGs with small (<45°), large (>45°) and 45° tilted structures. I have experimentally characterised TFGs, obtaining relationships between the radiation angle, central wavelength of the radiation profile, Bragg resonance and the tilt angle, which are consistent with theoretical simulation based on the mode-coupling theory. Furthermore, thermal responses have been measured for these three types of TFGs, showing the transmission spectra of large and 45° TFGs are insensitive to the temperature change, unlike the normal and small angle tilted FBGs. Based on the distinctive optical properties, TFGs have been developed into interrogation system and sensors, which form the other significant contributions of the work presented in this thesis. The 10°-TFG based 800nm WDM interrogation system can function not just as an in-fibre spectrum analyser but also possess refractive index sensing capability. By utilising the unique polarisation properties, the 81 °-TFG based sensors are capable of sensing the transverse loading and twisting with sensitivities of 2.04pW/(kg/m) and 145.90pW/rad, repectively. The final but the most important contribution from the research work presented in this thesis is the development of novel grating inscription techniques using near-IR femtosecond laser. A number of LPGs and FBGs were successfully fabricated in normal silica and mid-IR glass fibres using point-by-point and phase-mask techniques. LPGs and 1st and 2nd order FBGs have been fabricated in these mid-IR glass fibres showing resonances covering the wavelength range from 1200 to 1700nm with the strengths up to 13dB. In addition, the thermal and strain sensitivities of these gratings have been systematically investigated. All the results from these initial but systematic works will provide useful function characteristics information for future fibre grating based devices and applications in mid-IR range.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Azidoprofen {2-(4-azidophenyl)propionic acid; AZP}, an azido-substituted arylalkanoic acid, was investigated as a model soft drug candidate for a potential topical non-steroidal anti-inflammatory agent (NSAIA). Reversed-phase high performance liquid chromatography (HPLC) methods were developed for the assay of AZP, a series of ester analogues and their· degradation products. 1H-NMR spectroscopy was also employed as an analytical method in selected cases. Reduction of the azido-group to the corresponding amine has been proposed as a potential detoxification mechanism for compounds bearing this substituent. An in vitro assay to measure the susceptibility of azides towards reduction was developed using dithiothreitol as a model reducing agent. The rate of reduction of AZP was found to be base-dependent, hence supporting the postulated mechanism of thiol-mediated reduction via nucleophilic attack by the thiolate anion. Prodrugs may enhance topical bioavailability through the manipulation of physico-chemical properties of the parent drug. A series of ester derivatives of AZP were investigated for their susceptibility to chemical and enzymatic hydrolysis, which regenerates the parent acid. Use of alcoholic cosolvents with differing alkyl functions to that of the ester resulted in transesterification reactions, which were found to be enzyme-mediated. The skin penetration of AZP was assessed using an in vitro hairless mouse skin model, and silastic membrane in some cases. The rate of permeation of AZP was found to be a similar magnitude to that of the well established NSAIA ibuprofen. Penetration rates were dependent on the vehicle pH and drug concentration when solutions were employed. In contrast, flux was independent of pH when suspension formulations were used. Pretreatment of the skin with various enhancer regimes, including oleic acid and azone in propylene glycol, promoted the penetration of AZP. An intense IR absorption due to the azide group serves as a highly diagnostic marker, enabling azido compounds to be detected in the outer layers of the· stratum corneum following their application to skin, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This novel application enabled a non-invasive examination of the percutaneous penetration enhancement of a model azido compound in vivo in man, in the presence of the enhancer oleic acid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grewia gum is a naturally occurring polysaccharide which has potential as a pharmaceutical excipient. Differential scanning calorimetry and Fourier transform infrared (FT-IR) spectroscopy techniques were used to examine the thermal and molecular behaviours, respectively, of mixtures of grewia gum with cimetidine, ibuprofen or standard excipients, to assess potential interactions. No disappearance or broadening of the melting endotherm was seen with cimetidine or ibuprofen. Similarly, there was no interaction between grewia gum and the standard excipients tested. The results obtained using thermal analyses were supported by FT-IR analysis of the material mixtures. Grewia gum is an inert natural polymer which can be used alone or in combination with other excipients in the formulation of pharmaceutical dosage forms. © 2011 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC), gel permeation chromatography (GPC), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS), fourier-transformed infrared (FT-IR), solid-state nuclear magnetic resonance (NMR), and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations. © IPEC-Americas Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Central nervous system (CNS) drug delivery is often hampered due to the insidious nature of the blood-brain barrier (BBB). Nose-to-brain delivery via olfactory pathways have become a target of attention for drug delivery due to bypassing of the BBB. The antioxidant properties of phytochemicals make them promising as CNS active agents but possess poor water solubility and limited BBB penetration. The primary aim of this study was the development of mesoporous silica nanoparticles (MSNs) loaded with the poorly water-soluble phytochemicals curcumin and chrysin which could be utilised for nose-to-brain delivery. We formulated spherical MSNP using a templating approach resulting in ∼220nm particles with a high surface porosity. Curcumin and chrysin were successfully loaded into MSNP and confirmed through Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and HPLC approaches with a loading of 11-14% for curcumin and chrysin. Release was pH dependant with curcumin demonstrating increased chemical stability at a lower pH (5.5) with a release of 53.2%±2.2% over 24h and 9.4±0.6% for chrysin. MSNP were demonstrated to be non-toxic to olfactory neuroblastoma cells OBGF400, with chrysin (100μM) demonstrating a decrease in cell viability to 58.2±8.5% and curcumin an IC50 of 33±0.18μM. Furthermore confocal microscopy demonstrated nanoparticles of <500nm were able to accumulate within cells with FITC-loaded MSNP showing membrane localised and cytoplasmic accumulation following a 2h incubation. MSNP are useful carriers for poorly soluble phytochemicals and provide a novel vehicle to target and deliver drugs into the CNS and bypass the BBB through olfactory drug delivery.