38 resultados para Information Visualization Environment
em Aston University Research Archive
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. Most existing systems concentrate either on mining algorithms or on visualization techniques. Though visual methods developed in information visualization have been helpful, for improved understanding of a complex large high-dimensional dataset, there is a need for an effective projection of such a dataset onto a lower-dimension (2D or 3D) manifold. This paper introduces a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualization domain. The framework follows Shneiderman’s mantra to provide an effective user interface. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection methods, such as Generative Topographic Mapping (GTM) and Hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, billboarding, and user interaction facilities, to provide an integrated visual data mining framework. Results on a real life high-dimensional dataset from the chemoinformatics domain are also reported and discussed. Projection results of GTM are analytically compared with the projection results from other traditional projection methods, and it is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework.
Resumo:
We introduce a flexible visual data mining framework which combines advanced projection algorithms from the machine learning domain and visual techniques developed in the information visualization domain. The advantage of such an interface is that the user is directly involved in the data mining process. We integrate principled projection algorithms, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates and billboarding, to provide a visual data mining framework. Results on a real-life chemoinformatics dataset using GTM are promising and have been analytically compared with the results from the traditional projection methods. It is also shown that the HGTM algorithm provides additional value for large datasets. The computational complexity of these algorithms is discussed to demonstrate their suitability for the visual data mining framework. Copyright 2006 ACM.
Resumo:
Challenges of returnable transport equipment (RTE) management continue to heighten as the popularity of their usage magnifies. Logistics companies are investigating the implementation of radio-frequency identification (RFID) technology to alleviate problems such as loss prevention and stock reduction. However, the research within this field is limited and fails to fully explore with depth, the wider network improvements that can be made to optimize the supply chain through efficient RTE management. This paper, investigates the nature of RTE network management building on current research and practices, filling a gap in the literature, through the investigation of a product-centric approach where the paradigms of “intelligent products” and “autonomous objects” are explored. A network optimizing approach with RTE management is explored, encouraging advanced research development of the RTE paradigm to align academic research with problematic areas in industry. Further research continues with the development of an agent-based software system, ready for application to a real-case study distribution network, producing quantitative results for further analysis. This is pivotal on the endeavor to developing agile support systems, fully utilizing an information-centric environment and encouraging RTE to be viewed as critical network optimizing tools rather than costly waste.
Resumo:
Heterogeneous and incomplete datasets are common in many real-world visualisation applications. The probabilistic nature of the Generative Topographic Mapping (GTM), which was originally developed for complete continuous data, can be extended to model heterogeneous (i.e. containing both continuous and discrete values) and missing data. This paper describes and assesses the resulting model on both synthetic and real-world heterogeneous data with missing values.
Resumo:
This research investigates the contribution that Geographic Information Systems (GIS) can make to the land suitability process used to determine the effects of a climate change scenario. The research is intended to redress the severe under representation of Developing countries within the literature examining the impacts of climatic change upon crop productivity. The methodology adopts some of the Intergovernmental Panel on Climate Change (IPCC) estimates for regional climate variations, based upon General Circulation Model predictions (GCMs) and applies them to a baseline climate for Bangladesh. Utilising the United Nations Food & Agricultural Organisation's Agro-ecological Zones land suitability methodology and crop yield model, the effects of the scenario upon agricultural productivity on 14 crops are determined. A Geographic Information System (IDRISI) is adopted in order to facilitate the methodology, in conjunction with a specially designed spreadsheet, used to determine the yield and suitability rating for each crop. A simple optimisation routine using the GIS is incorporated to provide an indication of the 'maximum theoretical' yield available to the country, should the most calorifically significant crops be cultivated on each land unit both before and after the climate change scenario. This routine will provide an estimate of the theoretical population supporting capacity of the country, both now and in the future, to assist with planning strategies and research. The research evaluates the utility of this alternative GIS based methodology for the land evaluation process and determines the relative changes in crop yields that may result from changes in temperature, photosynthesis and flooding hazard frequency. In summary, the combination of a GIS and a spreadsheet was successful, the yield prediction model indicates that the application of the climate change scenario will have a deleterious effect upon the yields of the study crops. Any yield reductions will have severe implications for agricultural practices. The optimisation routine suggests that the 'theoretical maximum' population supporting capacity is well in excess of current and future population figures. If this agricultural potential could be realised however, it may provide some amelioration from the effects of climate change.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Although the importance of dataset fitness-for-use evaluation and intercomparison is widely recognised within the GIS community, no practical tools have yet been developed to support such interrogation. GeoViQua aims to develop a GEO label which will visually summarise and allow interrogation of key informational aspects of geospatial datasets upon which users rely when selecting datasets for use. The proposed GEO label will be integrated in the Global Earth Observation System of Systems (GEOSS) and will be used as a value and trust indicator for datasets accessible through the GEO Portal. As envisioned, the GEO label will act as a decision support mechanism for dataset selection and thereby hopefully improve user recognition of the quality of datasets. To date we have conducted 3 user studies to (1) identify the informational aspects of geospatial datasets upon which users rely when assessing dataset quality and trustworthiness, (2) elicit initial user views on a GEO label and its potential role and (3), evaluate prototype label visualisations. Our first study revealed that, when evaluating quality of data, users consider 8 facets: dataset producer information; producer comments on dataset quality; dataset compliance with international standards; community advice; dataset ratings; links to dataset citations; expert value judgements; and quantitative quality information. Our second study confirmed the relevance of these facets in terms of the community-perceived function that a GEO label should fulfil: users and producers of geospatial data supported the concept of a GEO label that provides a drill-down interrogation facility covering all 8 informational aspects. Consequently, we developed three prototype label visualisations and evaluated their comparative effectiveness and user preference via a third user study to arrive at a final graphical GEO label representation. When integrated in the GEOSS, an individual GEO label will be provided for each dataset in the GEOSS clearinghouse (or other data portals and clearinghouses) based on its available quality information. Producer and feedback metadata documents are being used to dynamically assess information availability and generate the GEO labels. The producer metadata document can either be a standard ISO compliant metadata record supplied with the dataset, or an extended version of a GeoViQua-derived metadata record, and is used to assess the availability of a producer profile, producer comments, compliance with standards, citations and quantitative quality information. GeoViQua is also currently developing a feedback server to collect and encode (as metadata records) user and producer feedback on datasets; these metadata records will be used to assess the availability of user comments, ratings, expert reviews and user-supplied citations for a dataset. The GEO label will provide drill-down functionality which will allow a user to navigate to a GEO label page offering detailed quality information for its associated dataset. At this stage, we are developing the GEO label service that will be used to provide GEO labels on demand based on supplied metadata records. In this presentation, we will provide a comprehensive overview of the GEO label development process, with specific emphasis on the GEO label implementation and integration into the GEOSS.
Resumo:
Neural networks can be regarded as statistical models, and can be analysed in a Bayesian framework. Generalisation is measured by the performance on independent test data drawn from the same distribution as the training data. Such performance can be quantified by the posterior average of the information divergence between the true and the model distributions. Averaging over the Bayesian posterior guarantees internal coherence; Using information divergence guarantees invariance with respect to representation. The theory generalises the least mean squares theory for linear Gaussian models to general problems of statistical estimation. The main results are: (1)~the ideal optimal estimate is always given by average over the posterior; (2)~the optimal estimate within a computational model is given by the projection of the ideal estimate to the model. This incidentally shows some currently popular methods dealing with hyperpriors are in general unnecessary and misleading. The extension of information divergence to positive normalisable measures reveals a remarkable relation between the dlt dual affine geometry of statistical manifolds and the geometry of the dual pair of Banach spaces Ld and Ldd. It therefore offers conceptual simplification to information geometry. The general conclusion on the issue of evaluating neural network learning rules and other statistical inference methods is that such evaluations are only meaningful under three assumptions: The prior P(p), describing the environment of all the problems; the divergence Dd, specifying the requirement of the task; and the model Q, specifying available computing resources.
Resumo:
Multidimensional compound optimization is a new paradigm in the drug discovery process, yielding efficiencies during early stages and reducing attrition in the later stages of drug development. The success of this strategy relies heavily on understanding this multidimensional data and extracting useful information from it. This paper demonstrates how principled visualization algorithms can be used to understand and explore a large data set created in the early stages of drug discovery. The experiments presented are performed on a real-world data set comprising biological activity data and some whole-molecular physicochemical properties. Data visualization is a popular way of presenting complex data in a simpler form. We have applied powerful principled visualization methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), to help the domain experts (screening scientists, chemists, biologists, etc.) understand and draw meaningful decisions. We also benchmark these principled methods against relatively better known visualization approaches, principal component analysis (PCA), Sammon's mapping, and self-organizing maps (SOMs), to demonstrate their enhanced power to help the user visualize the large multidimensional data sets one has to deal with during the early stages of the drug discovery process. The results reported clearly show that the GTM and HGTM algorithms allow the user to cluster active compounds for different targets and understand them better than the benchmarks. An interactive software tool supporting these visualization algorithms was provided to the domain experts. The tool facilitates the domain experts by exploration of the projection obtained from the visualization algorithms providing facilities such as parallel coordinate plots, magnification factors, directional curvatures, and integration with industry standard software. © 2006 American Chemical Society.
Resumo:
The data available during the drug discovery process is vast in amount and diverse in nature. To gain useful information from such data, an effective visualisation tool is required. To provide better visualisation facilities to the domain experts (screening scientist, biologist, chemist, etc.),we developed a software which is based on recently developed principled visualisation algorithms such as Generative Topographic Mapping (GTM) and Hierarchical Generative Topographic Mapping (HGTM). The software also supports conventional visualisation techniques such as Principal Component Analysis, NeuroScale, PhiVis, and Locally Linear Embedding (LLE). The software also provides global and local regression facilities . It supports regression algorithms such as Multilayer Perceptron (MLP), Radial Basis Functions network (RBF), Generalised Linear Models (GLM), Mixture of Experts (MoE), and newly developed Guided Mixture of Experts (GME). This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install & use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
A 21-residue peptide in explicit water has been simulated using classical molecular dynamics. The system's trajectory has been analysed with a novel approach that quantifies the process of how atom's environment trajectories are explored. The approach is based on the measure of Statistical Complexity that extracts complete dynamical information from the signal. The introduced characteristic quantifies the system's dynamics at the nanoseconds time scale. It has been found that the peptide exhibits nanoseconds long periods that significantly differ in the rates of the exploration of the dynamically allowed configurations of the environment. During these periods the rates remain the same but different from other periods and from the rate for water. Periods of dynamical frustration are detected when only limited routes in the space of possible trajectories of the surrounding atoms are realised.
Resumo:
This research is concerned with the relationship between business strategy and the environment within traditional sectors. It has sought to learn more about the strategic environmental attitudes of SMEs compared with large companies operating under the same market conditions. The sector studied is the ceramics industry (including tableware & ornamental-ware, sanitary ware & tiles, bricks, industrial & advanced ceramics and refractories) in the UK and France. Unlike the automotive, oil, chemical, steel or metal processing sectors, this industry is one of the few industrial sectors which has rarely been considered. The information on this sector was gathered by interviewing people responsible for environmental issues. The actual programme of valid interviews represents approximately a quarter of the UK and French ceramics industry which is large enough to enable a quantitative analysis and significant and non-biased conclusions. As a whole, all companies surveyed agreed that the ceramics activity impacts on the environment, and that they are increasingly affected both by environmental legislation, and by various non-legislative pressures. Approaches to the environmental agenda differ significantly among large and small companies. Smaller companies feel particularly pressed both by the financial costs and management time required to meet complex and changing legislation. The results of this survey also suggest that the ceramics industry sees environmental issues in terms of increased costs rather than new business opportunities. This is due principally to fears of import substitution from countries with lower environmental standards. Finally, replies indicate that generally there is a low level of awareness of the current legislative framework, suggesting a need to shift from a regulatory approach to a more self-regulated approach which encourages companies to be more proactive
Resumo:
The impact and use of information and communication technology on learning outcomes for accounting students is not well understood. This study investigates the impact of design features of Blackboard 1 used as aWeb-based Learning Environment (WBLE) in teaching undergraduate accounting students. Specifically, this investigation reports on a number of Blackboard design features (e.g. delivery of lecture notes, announcements, online assessment and model answers) used to deliver learning materials regarded as necessary to enhance learning outcomes. Responses from 369 on-campus students provided data to develop a regression model that seeks to explain enhanced participation and mental effort. The final regression shows that student satisfaction with the use of a WBLE is associated with five design features or variables. These include usefulness and availability of lecture notes, online assessment, model answers, and online chat.
Resumo:
Liberalization of the Indian economy has created considerable employment opportunities for those, including women, who possess marketable skills and talent. Historically, women in India have not enjoyed a good status in workplace settings whether in managerial or operative roles. This traditional positioning of women has restricted the intensity of their efforts towards realizing the benefits of the globalisation process. An attempt has been made in this contribution to highlight the important issues relating to women in management in the Indian context. The messages from a review of the literature are analysed. Research evidence from various sources is presented to highlight the dynamics of developments in the status of Indian women managers. The contribution discusses the main aspects of the historical, socio-cultural and economic factors influencing women managers: issues concerning gender-based stereotypes; the main barriers to women's movement to top managerial positions; the impact of developments in information technology (IT) on women managers; and the way forward. Results from two research projects are also presented. The analysis has important messages for practitioners and contributes to women's studies and management in the Indian context. © 2005 Taylor & Francis Ltd.